Skip to main content

Advertisement

Log in

Molecular markers in glioma

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Gliomas are the most malignant and aggressive form of brain tumors, and account for the majority of brain cancer related deaths. Malignant gliomas, including glioblastoma are treated with radiation and temozolomide, with only a minor benefit in survival time. A number of advances have been made in understanding glioma biology, including the discovery of cancer stem cells, termed glioma stem cells (GSC). Some of these advances include the delineation of molecular heterogeneity both between tumors from different patients as well as within tumors from the same patient. Such research highlights the importance of identifying and validating molecular markers in glioma. This review, intended as a practical resource for both clinical and basic investigators, summarizes some of the more well-known molecular markers (MGMT, 1p/19q, IDH, EGFR, p53, PI3K, Rb, and RAF), discusses how they are identified, and what, if any, clinical relevance they may have, in addition to discussing some of the specific biology for these markers. Additionally, we discuss identification methods for studying putative GSC’s (CD133, CD15, A2B5, nestin, ALDH1, proteasome activity, ABC transporters, and label-retention). While much research has been done on these markers, there is still a significant amount that we do not yet understand, which may account for some conflicting reports in the literature. Furthermore, it is unlikely that the investigator will be able to utilize one single marker to prospectively identify and isolate GSC from all, or possibly, any gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Louis DN et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820

    Article  PubMed  Google Scholar 

  2. Phillips HS et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173

    Article  CAS  PubMed  Google Scholar 

  3. Verhaak RG et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Freije WA et al (2004) Gene expression profiling of gliomas strongly predicts survival. Cancer Res 64(18):6503–6510

    Article  CAS  PubMed  Google Scholar 

  5. Parsons DW et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McNamara MG, Sahebjam S, Mason WP (2013) Emerging biomarkers in glioblastoma. Cancers 5(3):1103–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alentorn A et al (2015) Molecular profiling of gliomas: potential therapeutic implications. Expert Rev Anticancer Ther 15(8):955–962

    Article  CAS  PubMed  Google Scholar 

  8. Cohen AL, Colman H (2015) Glioma biology and molecular markers. Cancer Treat Res 163:15–30

    Article  PubMed  Google Scholar 

  9. Tanwar MK, Gilbert MR, Holland EC (2002) Gene expression microarray analysis reveals YKL-40 to be a potential serum marker for malignant character in human glioma. Cancer Res 62(15):4364–4368

    CAS  PubMed  Google Scholar 

  10. Patel M et al (2012) Molecular targeted therapy in recurrent glioblastoma: current challenges and future directions. Expert Opin Investig Drugs 21(9):1247–1266

    Article  CAS  PubMed  Google Scholar 

  11. Hegi ME et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003

    Article  CAS  PubMed  Google Scholar 

  12. Gupta K, Salunke P (2012) Molecular markers of glioma: an update on recent progress and perspectives. J Cancer Res Clin Oncol 138(12):1971–1981

    Article  CAS  PubMed  Google Scholar 

  13. Nakagawachi T et al (2003) Silencing effect of CpG island hypermethylation and histone modifications on O6-methylguanine-DNA methyltransferase (MGMT) gene expression in human cancer. Oncogene 22(55):8835–8844

    CAS  PubMed  Google Scholar 

  14. Riemenschneider MJ et al (2010) Molecular diagnostics of gliomas: state of the art. Acta Neuropathol 120(5):567–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Horbinski C et al (2012) Interplay among BRAF, p16, p53, and MIB1 in pediatric low-grade gliomas. Neuro Oncol 14(6):777–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ichimura K et al (2009) IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro Oncol 11(4):341–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yan H et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Balss J et al (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116(6):597–602

    Article  CAS  PubMed  Google Scholar 

  19. Yip S, Iafrate AJ, Louis DN (2008) Molecular diagnostic testing in malignant gliomas: a practical update on predictive markers. J Neuropathol Exp Neurol 67(1):1–15

    Article  CAS  PubMed  Google Scholar 

  20. Sugawa N et al (1990) Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proc Natl Acad Sci USA 87(21):8602–8606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nathanson DA et al (2014) Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 343(6166):72–76

    Article  CAS  PubMed  Google Scholar 

  22. Karsy M et al (2015) A practical review of prognostic correlations of molecular biomarkers in glioblastoma. Neurosurg Focus 38(3):E4

    Article  PubMed  Google Scholar 

  23. Mao H et al (2012) Deregulated signaling pathways in glioblastoma multiforme: molecular mechanisms and therapeutic targets. Cancer Investig 30(1):48–56

    Article  Google Scholar 

  24. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35

    Article  CAS  PubMed  Google Scholar 

  25. Nikiforova MN, Hamilton RL (2011) Molecular diagnostics of gliomas. Arch Pathol Lab Med 135(5):558–568

    CAS  PubMed  Google Scholar 

  26. Lam PY et al (2000) Expression of p19INK4d, CDK4, CDK6 in glioblastoma multiforme. Br J Neurosurg 14(1):28–32

    Article  CAS  PubMed  Google Scholar 

  27. Cancer Genome Atlas Research (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 455(7216):1061–1068

    Article  Google Scholar 

  28. Aldape K et al (2015) Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129(6):829–848

    Article  CAS  PubMed  Google Scholar 

  29. Knobbe CB, Reifenberger J, Reifenberger G (2004) Mutation analysis of the Ras pathway genes NRAS, HRAS, KRAS and BRAF in glioblastomas. Acta Neuropathol 108(6):467–470

    Article  CAS  PubMed  Google Scholar 

  30. Schindler G et al (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121(3):397–405

    Article  CAS  PubMed  Google Scholar 

  31. Jones DT et al (2009) Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene 28(20):2119–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Beier D, Schulz JB, Beier CP (2011) Chemoresistance of glioblastoma cancer stem cells-much more complex than expected. Mol Cancer 10:128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cho DY et al (2013) Targeting cancer stem cells for treatment of glioblastoma multiforme. Cell Transplant 22(4):731–739

    Article  PubMed  Google Scholar 

  34. Seymour T, Nowak A, Kakulas F (2015) Targeting aggressive cancer stem cells in glioblastoma. Front Oncol 5:159

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lathia JD et al (2015) Cancer stem cells in glioblastoma. Genes Dev 29(12):1203–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hemmati HD et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100(25):15178–15183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bradshaw A et al (2016) Cancer stem cell hierarchy in glioblastoma multiforme. Front Surg 3:21

    PubMed  PubMed Central  Google Scholar 

  38. Trepant AL et al (2015) Identification of OLIG2 as the most specific glioblastoma stem cell marker starting from comparative analysis of data from similar DNA chip microarray platforms. Tumor Biol 36(3):1943–1953

    Article  CAS  Google Scholar 

  39. Dahlrot RH et al (2013) What is the clinical value of cancer stem cell markers in gliomas? Int J Clin Exp Pathol 6(3):334–348

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bao S et al (2008) Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res 68(15):6043–6048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yanagisawa M (2011) Stem cell glycolipids. Neurochem Res 36(9):1623–1635

    Article  CAS  PubMed  Google Scholar 

  42. Lagadec C et al (2014) The RNA-binding protein Musashi-1 regulates proteasome subunit expression in breast cancer- and glioma-initiating cells. Stem Cells 32(1):135–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lathia JD et al (2010) Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell 6(5):421–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shmelkov SV et al (2005) AC133/CD133/Prominin-1. Int J Biochem Cell Biol 37(4):715–719

    Article  CAS  PubMed  Google Scholar 

  45. Schmohl JU, Vallera DA, CD133, selectively targeting the root of cancer. Toxins, 2016. 8(6)

  46. Singh SK et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828

    CAS  PubMed  Google Scholar 

  47. Singh SK et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401

    Article  CAS  PubMed  Google Scholar 

  48. Irollo E, Pirozzi G (2013) CD133: to be or not to be, is this the real question? Am J Transl Res 5(6):563–581

    PubMed  PubMed Central  Google Scholar 

  49. Xia CL et al (2003) A2B5 lineages of human astrocytic tumors and their recurrence. Int J Oncol 23(2):353–361

    PubMed  Google Scholar 

  50. Auvergne RM et al (2013) Transcriptional differences between normal and glioma-derived glial progenitor cells identify a core set of dysregulated genes. Cell Rep 3(6):2127–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen J et al (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488(7412):522–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60(4):585–595

    Article  CAS  PubMed  Google Scholar 

  53. Xie L et al (2015) Characterization of nestin, a selective marker for bone marrow derived mesenchymal stem cells. Stem Cells Int 2015:762098

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kastan MB et al (1990) Direct demonstration of elevated aldehyde dehydrogenase in human hematopoietic progenitor cells. Blood 75(10):1947–1950

    CAS  PubMed  Google Scholar 

  55. Storms RW et al (1999) Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci USA 96(16):9118–9123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Douville J, Beaulieu R, Balicki D (2009) ALDH1 as a functional marker of cancer stem and progenitor cells. Stem Cells Dev 18(1):17–25

    Article  CAS  PubMed  Google Scholar 

  57. Munakata K et al., Cancer stem-like properties in colorectal cancer cells with low proteasome activity. Clin Cancer Res, 2016

  58. Vlashi E et al (2009) In vivo imaging, tracking, and targeting of cancer stem cells. J Natl Cancer Inst 101(5):350–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lagadec C et al (2014) Tumor cells with low proteasome subunit expression predict overall survival in head and neck cancer patients. BMC Cancer 14:152

    Article  PubMed  PubMed Central  Google Scholar 

  60. Donnenberg VS, Donnenberg AD (2005) Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol 45(8):872–877

    Article  CAS  PubMed  Google Scholar 

  61. Szakacs G et al (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5(3):219–234

    Article  CAS  PubMed  Google Scholar 

  62. Bleau AM et al (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4(3):226–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hambardzumyan D, Squatrito M, Holland EC (2006) Radiation resistance and stem-like cells in brain tumors. Cancer Cell 10(6):454–456

    Article  CAS  PubMed  Google Scholar 

  64. Deleyrolle LP et al (2011) Evidence for label-retaining tumour-initiating cells in human glioblastoma. Brain 134(Pt 5):1331–1343

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zeng L et al (2016) Label-retaining assay enriches tumor-initiating cells in glioblastoma spheres cultivated in serum-free medium. Oncol Lett 12(2):815–824

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Grant Support: NINDS (National Institue of Neurological Disorders and Stroke) grant NS052563 and The Dr. Miriam and Sheldon G. Adelson Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harley I. Kornblum.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludwig, K., Kornblum, H.I. Molecular markers in glioma. J Neurooncol 134, 505–512 (2017). https://doi.org/10.1007/s11060-017-2379-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-017-2379-y

Keywords

Navigation