Skip to main content

Advertisement

Log in

Expression and prognostic value of microRNAs in lower-grade glioma depends on IDH1/2 status

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Histological and genomic characteristics are widely used in glioma management and research. This study investigated their relationship to the expression and prognostic value of microRNAs (miRNAs) in lower-grade glioma (LGG). A total of 447 LGG samples with available clinical and genomic information from The Cancer Genome Atlas database were reviewed. Samples with isocitrate dehydrogenase (IDH) 1/2 mutations (n = 366) were randomly divided into training and validation sets to establish and confirm a four-miRNA-based risk classifier. We found that IDH1/2 mutation status had greater impact than histological and other genomic features on miRNA expression patterns; 361/487 (74%) of miRNAs were differentially expressed according to IDH1/2 mutation status. Importantly, there were no miRNAs with the same prognostic significance among groups with different IDH1/2 mutation status. For IDH1/2-mut LGG, a four-miRNA risk classifier (miR-10b, miR-130b, miR-1304, and miR-302b) was established that could independently distinguish cases as high or low risk of poor prognosis in both training and validation sets. The risk classifier outperformed individual miRNAs and traditional prognostic factors in terms of sensitivity and specificity. Bioinformatic analyses indicated that high-risk samples were more mitotically active than low-risk samples. Taken together, IDH1/2 mutation status had a significant influence on miRNA expression and prognostication in LGG. The four-miRNA-based risk classifier can be used for risk stratification of IDH1/2-mut LGG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109. doi:10.1007/s00401-007-0243-4

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cancer Genome Atlas Research Network (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. doi:10.1056/NEJMoa1402121

    Article  Google Scholar 

  3. Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H, Pekmezci M, Rice T, Kosel ML, Smirnov IV, Sarkar G, Caron AA, Kollmeyer TM, Praska CE, Chada AR, Halder C, Hansen HM, McCoy LS, Bracci PM, Marshall R, Zheng S, Reis GF, Pico AR, O’Neill BP, Buckner JC, Giannini C, Huse JT, Perry A, Tihan T, Berger MS, Chang SM, Prados MD, Wiemels J, Wiencke JK, Wrensch MR, Jenkins RB (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med. doi:10.1056/NEJMoa1407279

    Article  PubMed  PubMed Central  Google Scholar 

  4. Suzuki H, Aoki K, Chiba K, Sato Y, Shiozawa Y, Shiraishi Y, Shimamura T, Niida A, Motomura K, Ohka F, Yamamoto T, Tanahashi K, Ranjit M, Wakabayashi T, Yoshizato T, Kataoka K, Yoshida K, Nagata Y, Sato-Otsubo A, Tanaka H, Sanada M, Kondo Y, Nakamura H, Mizoguchi M, Abe T, Muragaki Y, Watanabe R, Ito I, Miyano S, Natsume A, Ogawa S (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47:458–468. doi:10.1038/ng.3273

    Article  CAS  PubMed  Google Scholar 

  5. Guo C, Pirozzi CJ, Lopez GY, Yan H (2011) Isocitrate dehydrogenase mutations in gliomas: mechanisms, biomarkers and therapeutic target. Curr Opin Neurol 24:648–652. doi:10.1097/WCO.0b013e32834cd415

    Article  PubMed  PubMed Central  Google Scholar 

  6. Smith JS, Perry A, Borell TJ, Lee HK, O’Fallon J, Hosek SM, Kimmel D, Yates A, Burger PC, Scheithauer BW, Jenkins RB (2000) Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. J Clin Oncol 18:636–645

    Article  CAS  PubMed  Google Scholar 

  7. Chan AK, Yao Y, Zhang Z, Chung NY, Liu JS, Li KK, Shi Z, Chan DT, Poon WS, Zhou L, Ng HK (2015) TERT promoter mutations contribute to subset prognostication of lower-grade gliomas. Mod Pathol 28:177–186. doi:10.1038/modpathol.2014.94

    Article  CAS  PubMed  Google Scholar 

  8. Koelsche C, Sahm F, Capper D, Reuss D, Sturm D, Jones DT, Kool M, Northcott PA, Wiestler B, Bohmer K, Meyer J, Mawrin C, Hartmann C, Mittelbronn M, Platten M, Brokinkel B, Seiz M, Herold-Mende C, Unterberg A, Schittenhelm J, Weller M, Pfister S, Wick W, Korshunov A, von Deimling A (2013) Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathol 126:907–915. doi:10.1007/s00401-013-1195-5

    Article  CAS  PubMed  Google Scholar 

  9. Liu XY, Gerges N, Korshunov A, Sabha N, Khuong-Quang DA, Fontebasso AM, Fleming A, Hadjadj D, Schwartzentruber J, Majewski J, Dong Z, Siegel P, Albrecht S, Croul S, Jones DT, Kool M, Tonjes M, Reifenberger G, Faury D, Zadeh G, Pfister S, Jabado N (2012) Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathol 124:615–625. doi:10.1007/s00401-012-1031-3

    Article  CAS  PubMed  Google Scholar 

  10. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. doi:10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  11. Yan W, Li R, Liu Y, Yang P, Wang Z, Zhang C, Bao Z, Zhang W, You Y, Jiang T (2014) MicroRNA expression patterns in the malignant progression of gliomas and a 5-microRNA signature for prognosis. Oncotarget 5:12908–12915. doi:10.18632/oncotarget.2679

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pang JC, Kwok WK, Chen Z, Ng HK (2009) Oncogenic role of microRNAs in brain tumors. Acta Neuropathol 117:599–611. doi:10.1007/s00401-009-0525-0

    Article  CAS  PubMed  Google Scholar 

  13. Teplyuk NM, Mollenhauer B, Gabriely G, Giese A, Kim E, Smolsky M, Kim RY, Saria MG, Pastorino S, Kesari S, Krichevsky AM (2012) MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity. Neuro-oncology 14:689–700. doi:10.1093/neuonc/nos074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006. doi:10.1038/cr.2008.282

    Article  CAS  PubMed  Google Scholar 

  15. Yu SL, Chen HY, Chang GC, Chen CY, Chen HW, Singh S, Cheng CL, Yu CJ, Lee YC, Chen HS, Su TJ, Chiang CC, Li HN, Hong QS, Su HY, Chen CC, Chen WJ, Liu CC, Chan WK, Chen WJ, Li KC, Chen JJ, Yang PC (2008) MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 13:48–57. doi:10.1016/j.ccr.2007.12.008

    Article  CAS  PubMed  Google Scholar 

  16. Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. doi:10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  17. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815. doi:10.1093/nar/gks1094

    Article  CAS  PubMed  Google Scholar 

  18. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550. doi:10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Agnihotri S, Aldape KD, Zadeh G (2014) Isocitrate dehydrogenase status and molecular subclasses of glioma and glioblastoma. Neurosurg Focus 37:E13. doi:10.3171/2014.9.FOCUS14505

    Article  PubMed  Google Scholar 

  20. Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY, Fouse SD, Yamamoto S, Ueda H, Tatsuno K, Asthana S, Jalbert LE, Nelson SJ, Bollen AW, Gustafson WC, Charron E, Weiss WA, Smirnov IV, Song JS, Olshen AB, Cha S, Zhao Y, Moore RA, Mungall AJ, Jones SJ, Hirst M, Marra MA, Saito N, Aburatani H, Mukasa A, Berger MS, Chang SM, Taylor BS, Costello JF (2014) Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343:189–193. doi:10.1126/science.1239947

    Article  CAS  PubMed  Google Scholar 

  21. Londin E, Loher P, Telonis AG, Quann K, Clark P, Jing Y, Hatzimichael E, Kirino Y, Honda S, Lally M, Ramratnam B, Comstock CE, Knudsen KE, Gomella L, Spaeth GL, Hark L, Katz LJ, Witkiewicz A, Rostami A, Jimenez SA, Hollingsworth MA, Yeh JJ, Shaw CA, McKenzie SE, Bray P, Nelson PT, Zupo S, Van Roosbroeck K, Keating MJ, Calin GA, Yeo C, Jimbo M, Cozzitorto J, Brody JR, Delgrosso K, Mattick JS, Fortina P, Rigoutsos I (2015) Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci USA 112:E1106–E1115. doi:10.1073/pnas.1420955112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barbano R, Palumbo O, Pasculli B, Galasso M, Volinia S, D’Angelo V, Icolaro N, Coco M, Dimitri L, Graziano P, Copetti M, Valori VM, Maiello E, Carella M, Fazio VM, Parrella P (2014) A miRNA signature for defining aggressive phenotype and prognosis in gliomas. PLoS ONE 9:e108950. doi:10.1371/journal.pone.0108950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Visani M, de Biase D, Marucci G, Cerasoli S, Nigrisoli E, Reggiani MLB, Albani F, Baruzzi A, Pession A, PERNO study group (2014) Expression of 19 microRNAs in glioblastoma and comparison with other brain neoplasia of grades I-III. Mol Oncol 8:417–430. doi:10.1016/j.molonc.2013.12.010

    Article  CAS  PubMed  Google Scholar 

  24. Hayes J, Thygesen H, Tumilson C, Droop A, Boissinot M, Hughes TA, Westhead D, Alder JE, Shaw L, Short SC, Lawler SE (2015) Prediction of clinical outcome in glioblastoma using a biologically relevant nine-microRNA signature. Mol Oncol 9:704–714. doi:10.1016/j.molonc.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  25. Ji Y, Wei Y, Wang J, Gong K, Zhang Y, Zuo H (2015) Correlation of microRNA-10b upregulation and poor prognosis in human gliomas. Tumour Biol 36:6249–6254. doi:10.1007/s13277-015-3310-9

    Article  CAS  PubMed  Google Scholar 

  26. Sasayama T, Nishihara M, Kondoh T, Hosoda K, Kohmura E (2009) MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer 125:1407–1413. doi:10.1002/ijc.24522

    Article  CAS  PubMed  Google Scholar 

  27. Gabriely G, Yi M, Narayan RS, Niers JM, Wurdinger T, Imitola J, Ligon KL, Kesari S, Esau C, Stephens RM, Tannous BA, Krichevsky AM (2011) Human glioma growth is controlled by microRNA-10b. Cancer Res 71:3563–3572. doi:10.1158/0008-5472.CAN-10-3568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guessous F, Alvarado-Velez M, Marcinkiewicz L, Zhang Y, Kim J, Heister S, Kefas B, Godlewski J, Schiff D, Purow B, Abounader R (2013) Oncogenic effects of miR-10b in glioblastoma stem cells. J Neurooncol 112:153–163. doi:10.1007/s11060-013-1047-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Malzkorn B, Wolter M, Liesenberg F, Grzendowski M, Stuhler K, Meyer HE, Reifenberger G (2010) Identification and functional characterization of microRNAs involved in the malignant progression of gliomas. Brain Pathol 20:539–550. doi:10.1111/j.1750-3639.2009.00328.x

    Article  CAS  PubMed  Google Scholar 

  30. Sheng X, Chen H, Wang H, Ding Z, Xu G, Zhang J, Lu W, Wu T, Zhao L (2015) MicroRNA-130b promotes cell migration and invasion by targeting peroxisome proliferator-activated receptor gamma in human glioma. Biomed Pharmacother 76: 121–126. doi:10.1016/j.biopha.2015.10.003

    Article  CAS  PubMed  Google Scholar 

  31. Zhu G, Wang Y, Mijiti M, Wang Z, Wu PF, Jiafu D (2015) Upregulation of miR-130b enhances stem cell-like phenotype in glioblastoma by inactivating the Hippo signaling pathway. Biochem Biophys Res Commun 465:194–199. doi:10.1016/j.bbrc.2015.07.149

    Article  CAS  PubMed  Google Scholar 

  32. Colangelo T, Fucci A, Votino C, Sabatino L, Pancione M, Laudanna C, Binaschi M, Bigioni M, Maggi CA, Parente D, Forte N, Colantuoni V (2013) MicroRNA-130b promotes tumor development and is associated with poor prognosis in colorectal cancer. Neoplasia 15:1218–1231

    Article  Google Scholar 

  33. Chang RM, Xu JF, Fang F, Yang H, Yang LY (2016) MicroRNA-130b promotes proliferation and EMT-induced metastasis via PTEN/p-AKT/HIF-1alpha signaling. Tumour Biol. doi:10.1007/s13277-016-4919-z

    Article  PubMed  Google Scholar 

  34. Yu T, Cao R, Li S, Fu M, Ren L, Chen W, Zhu H, Zhan Q, Shi R (2015) MiR-130b plays an oncogenic role by repressing PTEN expression in esophageal squamous cell carcinoma cells. BMC Cancer 15:29. doi:10.1186/s12885-015-1031-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Olar A, Wani KM, Alfaro-Munoz KD, Heathcock LE, van Thuijl HF, Gilbert MR, Armstrong TS, Sulman EP, Cahill DP, Vera-Bolanos E, Yuan Y, Reijneveld JC, Ylstra B, Wesseling P, Aldape KD (2015) IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II-III diffuse gliomas. Acta Neuropathol. doi:10.1007/s00401-015-1398-z

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zeng A, Hu Q, Liu Y, Wang Z, Cui X, Li R, Yan W, You Y (2015) IDH1/2 mutation status combined with Ki-67 labeling index defines distinct prognostic groups in glioma. Oncotarget 6:30232–30238. doi:10.18632/oncotarget.4920

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors conducting this work represent the Chinese Glioma Cooperative Group (CGCG).

Funding

This work was funded by grants from the National Natural Science Foundation of China (Grant Numbers: 81172409, 81472360, and 81402045) and the Science and Technology Department of Liaoning Province (Grant No. 2011225034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anhua Wu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, W., Ren, X., Zhang, C. et al. Expression and prognostic value of microRNAs in lower-grade glioma depends on IDH1/2 status. J Neurooncol 132, 207–218 (2017). https://doi.org/10.1007/s11060-016-2368-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-016-2368-6

Keywords

Navigation