Skip to main content

Advertisement

Log in

Technical principles in glioma surgery and preoperative considerations

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The goal of glioma surgery is maximal safe resection. These intrinsic brain neoplasms, however, lack a clear margin and frequently infiltrate eloquent areas of the brain thus making their surgical resection challenging. This review first focuses on discussion of preoperative investigations that aid in anatomical and functional tumor characterization that help define tumor extent and determine the feasibility of complete resection. The second part of this review outlines intraoperative adjuncts that help identify tumor infiltrated tissues during surgery to maximize the extent of resection. In addition, we discuss the principles of intraoperative functional cortical and subcortical mapping and monitoring that enable maximal tumor resection while minimizing the risk of postoperative neurological deficit. Combined use of different modalities before and during surgery is encouraged to meet surgical goals and to ensure best patient outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Li YM, Suki D, Hess K, Sawaya R (2016) The influence of maximum safe resection of glioblastoma on survival in 1229 patients: can we do better than gross-total resection? J Neurosurg 124:977–988

    Article  PubMed  Google Scholar 

  2. Lacroix M, Abi-Said D, Fourney DR et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198

    Article  CAS  PubMed  Google Scholar 

  3. Sanai N, Polley M-Y, McDermott MW, Parsa AT, Berger MS (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115:3–8

    Article  PubMed  Google Scholar 

  4. Jakola AS, Myrmel KS, Kloster R, Torp SH, Lindal S, Unsgård G, Solheim O (2012) Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas. JAMA 308:1881–1888

    Article  CAS  PubMed  Google Scholar 

  5. Coburger J, Merkel A, Scherer M et al (2016) Low-grade glioma surgery in intraoperative magnetic resonance imaging: results of a multicenter retrospective assessment of the German Study Group for intraoperative magnetic resonance imaging. Neurosurgery 78:775–786

    Article  PubMed  Google Scholar 

  6. McGirt MJ, Mukherjee D, Chaichana KL, Than KD, Weingart JD, Quinones-Hinojosa A (2009) Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery 65:463–469

    Article  PubMed  Google Scholar 

  7. De Witt Hamer PC, Robles SG, Zwinderman AH, Duffau H, Berger MS (2012) Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol 30:2559–2565

    Article  Google Scholar 

  8. Wu J-S, Zhou L-F, Tang W-J, Mao Y, Hu J, Song Y-Y, Hong X-N, Du G-H (2007) Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery 61:935–948

    Article  PubMed  Google Scholar 

  9. Fouke SJ, Benzinger T, Gibson D, Ryken TC, Kalkanis SN, Olson JJ (2015) The role of imaging in the management of adults with diffuse low grade glioma. J Neurooncol 125:457–479

    Article  PubMed  Google Scholar 

  10. Terakawa Y, Tsuyuguchi N, Iwai Y, Yamanaka K, Higashiyama S, Takami T, Ohata K (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49:694–699

    Article  PubMed  Google Scholar 

  11. Pirotte BJM, Levivier M, Goldman S, Massager N, Wikler D, Dewitte O, Bruneau M, Rorive S, David P, Brotchi J (2009) Positron emission tomography-guided volumetric resection of supratentorial high-grade gliomas: a survival analysis in 66 consecutive patients. Neurosurgery 64:471–481

    Article  PubMed  Google Scholar 

  12. Jansen NL, Suchorska B, Wenter V et al (2014) Dynamic 18F-FET PET in newly diagnosed astrocytic low-grade glioma identifies high-risk patients. J Nucl Med 55:198–203

    Article  CAS  PubMed  Google Scholar 

  13. Kunz M, Thon N, Eigenbrod S et al (2011) Hot spots in dynamic (18)FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neuro-Oncology 13:307–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89:5951–5955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Krings T, Schreckenberger M, Rohde V et al (2002) Functional MRI and 18F FDG-positron emission tomography for presurgical planning: comparison with electrical cortical stimulation. Acta Neurochir (Wien) 144:889–899

    Article  CAS  Google Scholar 

  16. Roux FE, Boulanouar K, Ranjeva JP, Tremoulet M, Henry P, Manelfe C, Sabatier J, Berry I (1999) Usefulness of motor functional MRI correlated to cortical mapping in rolandic low-grade astrocytomas. Acta Neurochir (Wien) 141:71–79

    Article  CAS  Google Scholar 

  17. Trinh VT, Fahim DK, Maldaun MVC et al (2014) Impact of preoperative functional magnetic resonance imaging during awake craniotomy procedures for intraoperative guidance and complication avoidance. Stereotact Funct Neurosurg 92:315–322

    Article  PubMed  Google Scholar 

  18. Kuchcinski G, Mellerio C, Pallud J et al (2015) Three-tesla functional MR language mapping: comparison with direct cortical stimulation in gliomas. Neurology 84:560–568

    Article  CAS  PubMed  Google Scholar 

  19. Schreiber A, Hubbe U, Ziyeh S, Hennig J (2000) The influence of gliomas and nonglial space-occupying lesions on blood-oxygen-level-dependent contrast enhancement. AJNR Am J Neuroradiol 21:1055–1063

    CAS  PubMed  Google Scholar 

  20. Ulmer JL, Hacein-Bey L, Mathews VP, Mueller WM, DeYoe EA, Prost RW, Meyer GA, Krouwer HG, Schmainda KM (2004) Lesion-induced pseudo-dominance at functional magnetic resonance imaging: implications for preoperative assessments. Neurosurgery 55:569–579

    Article  PubMed  Google Scholar 

  21. Korvenoja A, Kirveskari E, Aronen HJ et al (2006) Sensorimotor cortex localization: comparison of magnetoencephalography, functional MR imaging, and intraoperative cortical mapping. Radiology 241:213–222

    Article  PubMed  Google Scholar 

  22. Tarapore PE, Tate MC, Findlay AM, Honma SM, Mizuiri D, Berger MS, Nagarajan SS (2012) Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J Neurosurg 117:354–362

    Article  PubMed  PubMed Central  Google Scholar 

  23. Krieg SM, Shiban E, Buchmann N, Gempt J, Foerschler A, Meyer B, Ringel F (2012) Utility of presurgical navigated transcranial magnetic brain stimulation for the resection of tumors in eloquent motor areas. J Neurosurg 116:994–1001

    Article  PubMed  Google Scholar 

  24. Krieg SM, Sabih J, Bulubasova L, Obermueller T, Negwer C, Janssen I, Shiban E, Meyer B, Ringel F (2014) Preoperative motor mapping by navigated transcranial magnetic brain stimulation improves outcome for motor eloquent lesions. Neuro-Oncology 16:1274–1282

    Article  PubMed  PubMed Central  Google Scholar 

  25. Frey D, Schilt S, Strack V, Zdunczyk A, Rösler J, Niraula B, Vajkoczy P, Picht T (2014) Navigated transcranial magnetic stimulation improves the treatment outcome in patients with brain tumors in motor eloquent locations. Neuro-Oncology 16:1365–1372

    Article  PubMed  PubMed Central  Google Scholar 

  26. Picht T, Frey D, Thieme S, Kliesch S, Vajkoczy P (2016) Presurgical navigated TMS motor cortex mapping improves outcome in glioblastoma surgery: a controlled observational study. J Neurooncol 126:535–543

    Article  PubMed  Google Scholar 

  27. Picht T, Krieg SM, Sollmann N et al (2013) A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery. Neurosurgery 72:808–819

    Article  PubMed  Google Scholar 

  28. Krieg SM, Tarapore PE, Picht T et al (2014) Optimal timing of pulse onset for language mapping with navigated repetitive transcranial magnetic stimulation. Neuroimage 100:219–236

    Article  PubMed  Google Scholar 

  29. Zhu F-P, Wu J-S, Song Y-Y, Yao C-J, Zhuang D-X, Xu G, Tang W-J, Qin Z-Y, Mao Y, Zhou L-F (2012) Clinical application of motor pathway mapping using diffusion tensor imaging tractography and intraoperative direct subcortical stimulation in cerebral glioma surgery: a prospective cohort study. Neurosurgery 71:1170–1183

    Article  PubMed  Google Scholar 

  30. Pujol S, Wells W, Pierpaoli C et al (2015) The DTI challenge: toward standardized evaluation of diffusion tensor imaging tractography for neurosurgery. J Neuroimaging 25:875–882

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wedeen VJ, Hagmann P, Tseng W-YI, Reese TG, Weisskoff RM (2005) Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 54:1377–1386

    Article  PubMed  Google Scholar 

  32. Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ (2002) High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med 48:577–582

    Article  PubMed  Google Scholar 

  33. Kumar VA, Hamilton J, Hayman LA, Kumar AJ, Rao G, Weinberg JS, Sawaya R, Prabhu SS (2013) Deformable anatomic templates improve analysis of gliomas with minimal mass effect in eloquent areas. Neurosurgery 73:534–542

    Article  PubMed  Google Scholar 

  34. Vabulas M, Kumar VA, Hamilton JD, Martinez JJ, Rao G, Sawaya R, Prabhu SS (2014) Real-time atlas-based stereotactic neuronavigation. Neurosurgery 74:128–134

    Article  PubMed  Google Scholar 

  35. Willems PWA, Taphoorn MJB, Burger H, van der Berkelbach Sprenkel JW, Tulleken CAF (2006) Effectiveness of neuronavigation in resecting solitary intracerebral contrast-enhancing tumors: a randomized controlled trial. J Neurosurg 104:360–368

    Article  PubMed  Google Scholar 

  36. Mert A, Kiesel B, Wöhrer A, Martínez-Moreno M, Minchev G, Furtner J, Knosp E, Wolfsberger S, Widhalm G (2015) Introduction of a standardized multimodality image protocol for navigation-guided surgery of suspected low-grade gliomas. Neurosurg Focus 38:E4

    Article  PubMed  Google Scholar 

  37. Knauth M, Wirtz CR, Tronnier VM, Aras N, Kunze S, Sartor K (1999) Intraoperative MR imaging increases the extent of tumor resection in patients with high-grade gliomas. AJNR Am J Neuroradiol 20:1642–1646

    CAS  PubMed  Google Scholar 

  38. Senft C, Bink A, Franz K, Vatter H, Gasser T, Seifert V (2011) Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol 12:997–1003

    Article  PubMed  Google Scholar 

  39. Serra C, Stauffer A, Actor B, Burkhardt J-K, Ulrich NH-B, Bernays R-L, Bozinov O (2012) Intraoperative high frequency ultrasound in intracerebral high-grade tumors. Ultraschall Med 33:E306–E312

    Article  CAS  PubMed  Google Scholar 

  40. Gerganov VM, Samii A, Giordano M, Samii M, Fahlbusch R (2011) Two-dimensional high-end ultrasound imaging compared to intraoperative MRI during resection of low-grade gliomas. J Clin Neurosci 18:669–673

    Article  PubMed  Google Scholar 

  41. Le Roux PD, Berger MS, Wang K, Mack LA, Ojemann GA (1992) Low grade gliomas: comparison of intraoperative ultrasound characteristics with preoperative imaging studies. J Neurooncol 13:189–198

    Article  CAS  PubMed  Google Scholar 

  42. Selbekk T, Jakola AS, Solheim O, Johansen TF, Lindseth F, Reinertsen I, Unsgård G (2013) Ultrasound imaging in neurosurgery: approaches to minimize surgically induced image artefacts for improved resection control. Acta Neurochir (Wien) 155:973–980

    Article  Google Scholar 

  43. Rivaz H, Chen SJ-S, Collins DL (2015) Automatic deformable MR-ultrasound registration for image-guided neurosurgery. IEEE Trans Med Imaging 34:366–380

    Article  PubMed  Google Scholar 

  44. Prada F, Mattei L, Del Bene M et al (2014) Intraoperative cerebral glioma characterization with contrast enhanced ultrasound. Biomed Res Int 2014:1–9

    Article  Google Scholar 

  45. Panciani PP, Fontanella M, Schatlo B, Garbossa D, Agnoletti A, Ducati A, Lanotte M (2012) Fluorescence and image guided resection in high grade glioma. Clin Neurol Neurosurg 114:37–41

    Article  PubMed  Google Scholar 

  46. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen H-J, ALA-Glioma Study Group (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401

    Article  CAS  PubMed  Google Scholar 

  47. Nabavi A, Thurm H, Zountsas B, Pietsch T, Lanfermann H, Pichlmeier U, Mehdorn M, 5-ALA Recurrent glioma study group (2009) Five-aminolevulinic acid for fluorescence-guided resection of recurrent malignant gliomas: a phase ii study. Neurosurgery 65:1070–1076

    Article  PubMed  Google Scholar 

  48. Ji M, Orringer DA, Freudiger CW et al (2013) Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci Transl Med 5:201ra119

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kalkanis SN, Kast RE, Rosenblum ML, Mikkelsen T, Yurgelevic SM, Nelson KM, Raghunathan A, Poisson LM, Auner GW (2014) Raman spectroscopy to distinguish grey matter, necrosis, and glioblastoma multiforme in frozen tissue sections. J Neurooncol 116:477–485

    Article  CAS  PubMed  Google Scholar 

  50. Jermyn M, Mok K, Mercier J, Desroches J, Pichette J, Saint-Arnaud K, Bernstein L, Guiot M-C, Petrecca K, Leblond F (2015) Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci Transl Med 7:274ra19

    Article  CAS  PubMed  Google Scholar 

  51. Desroches J, Jermyn M, Mok K et al (2015) Characterization of a Raman spectroscopy probe system for intraoperative brain tissue classification. Biomed Opt Express 6:2380–2397

    Article  PubMed  PubMed Central  Google Scholar 

  52. Taniguchi M, Cedzich C, Schramm J (1993) Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery 32:219–226

    Article  CAS  PubMed  Google Scholar 

  53. Shah KB, Hayman LA, Chavali LS, Hamilton JD, Prabhu SS, Wangaryattawanich P, Kumar VA, Kumar AJ (2015) Glial tumors in brodmann area 6: spread pattern and relationships to motor areas. Radiographics 35:793–803

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cedzich C, Taniguchi M, Schäfer S, Schramm J (1996) Somatosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region. Neurosurgery 38:962–970

    Article  CAS  PubMed  Google Scholar 

  55. Szelényi A, Senft C, Jardan M, Forster MT, Franz K, Seifert V, Vatter H (2011) Intra-operative subcortical electrical stimulation: a comparison of two methods. Clin Neurophysiol 122:1470–1475

    Article  PubMed  Google Scholar 

  56. Kombos T, Suess O, Ciklatekerlio O, Brock M (2001) Monitoring of intraoperative motor evoked potentials to increase the safety of surgery in and around the motor cortex. J Neurosurg 95:608–614

    Article  CAS  PubMed  Google Scholar 

  57. Krieg SM, Shiban E, Droese D, Gempt J, Buchmann N, Pape H, Ryang Y-M, Meyer B, Ringel F (2012) Predictive value and safety of intraoperative neurophysiological monitoring with motor evoked potentials in glioma surgery. Neurosurgery 70:1060–1071

    Article  PubMed  Google Scholar 

  58. Seidel K, Beck J, Stieglitz L, Schucht P, Raabe A (2013) The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors. J Neurosurg 118:287–296

    Article  PubMed  Google Scholar 

  59. Nimsky C, Ganslandt O, Hastreiter P, Wang R, Benner T, Sorensen AG, Fahlbusch R (2007) Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery. Neurosurgery 61:178–185

    Article  PubMed  Google Scholar 

  60. Nossek E, Korn A, Shahar T et al (2011) Intraoperative mapping and monitoring of the corticospinal tracts with neurophysiological assessment and 3-dimensional ultrasonography-based navigation. Clinical article. J Neurosurg 114:738–746

    Article  PubMed  Google Scholar 

  61. Ohue S, Kohno S, Inoue A, Yamashita D, Harada H, Kumon Y, Kikuchi K, Miki H, Ohnishi T (2012) Accuracy of diffusion tensor magnetic resonance imaging-based tractography for surgery of gliomas near the pyramidal tract: a significant correlation between subcortical electrical stimulation and postoperative tractography. Neurosurgery 70:283–293

    Article  PubMed  Google Scholar 

  62. Prabhu SS, Gasco J, Tummala S, Weinberg JS, Rao G (2011) Intraoperative magnetic resonance imaging-guided tractography with integrated monopolar subcortical functional mapping for resection of brain tumors. J Neurosurg 114:719–726

    Article  PubMed  Google Scholar 

  63. Raabe A, Beck J, Schucht P, Seidel K (2014) Continuous dynamic mapping of the corticospinal tract during surgery of motor eloquent brain tumors: evaluation of a new method. J Neurosurg 120:1015–1024

    Article  PubMed  Google Scholar 

  64. Nossek E, Matot I, Shahar T, Barzilai O, Rapoport Y, Gonen T, Sela G, Korn A, Hayat D, Ram Z (2013) Failed awake craniotomy: a retrospective analysis in 424 patients undergoing craniotomy for brain tumor. J Neurosurg 118:243–249

    Article  PubMed  Google Scholar 

  65. Hervey-Jumper SL, Li J, Lau D, Molinaro AM, Perry DW, Meng L, Berger MS (2015) Awake craniotomy to maximize glioma resection: methods and technical nuances over a 27-year period. J Neurosurg 123:325–339

    Article  PubMed  Google Scholar 

  66. Chang EF, Raygor KP, Berger MS (2015) Contemporary model of language organization: an overview for neurosurgeons. J Neurosurg 122:250–261

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujit S. Prabhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 75309 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivosheya, D., Prabhu, S.S., Weinberg, J.S. et al. Technical principles in glioma surgery and preoperative considerations. J Neurooncol 130, 243–252 (2016). https://doi.org/10.1007/s11060-016-2171-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-016-2171-4

Keywords

Navigation