Skip to main content

Advertisement

Log in

Development of a transplantable glioma tumour model from genetically engineered mice: MRI/MRS/MRSI characterisation

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The initial aim of this study was to generate a transplantable glial tumour model of low-intermediate grade by disaggregation of a spontaneous tumour mass from genetically engineered models (GEM). This should result in an increased tumour incidence in comparison to GEM animals. An anaplastic oligoastrocytoma (OA) tumour of World Health Organization (WHO) grade III was obtained from a female GEM mouse with the S100β-v-erbB/inK4a-Arf (+/−) genotype maintained in the C57BL/6 background. The tumour tissue was disaggregated; tumour cells from it were grown in aggregates and stereotactically injected into C57BL/6 mice. Tumour development was followed using Magnetic Resonance Imaging (MRI), while changes in the metabolomics pattern of the masses were evaluated by Magnetic Resonance Spectroscopy/Spectroscopic Imaging (MRS/MRSI). Final tumour grade was evaluated by histopathological analysis. The total number of tumours generated from GEM cells from disaggregated tumour (CDT) was 67 with up to 100 % penetrance, as compared to 16 % in the local GEM model, with an average survival time of 66 ± 55 days, up to 4.3-fold significantly higher than the standard GL261 glioblastoma (GBM) tumour model. Tumours produced by transplantation of cells freshly obtained from disaggregated GEM tumour were diagnosed as WHO grade III anaplastic oligodendroglioma (ODG) and OA, while tumours produced from a previously frozen sample were diagnosed as WHO grade IV GBM. We successfully grew CDT and generated tumours from a grade III GEM glial tumour. Freezing and cell culture protocols produced progression to grade IV GBM, which makes the developed transplantable model qualify as potential secondary GBM model in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BBB:

Blood–brain barrier

CDT:

Cells from disaggregated tumour

CE:

Contrast-enhanced

Cho:

Choline

Cr:

Creatine

DCE:

Dynamic contrast enhancement

DMSO:

Dimethyl sulfoxide

FASTMAP:

Fast automatic shimming technique by mapping along projections

GABRMN:

Grup d’aplicacions Biomèdiques de la Ressonància Magnètica Nuclear

GBM:

Glioblastoma

GEM:

Genetically engineered models

GFAP:

Glial fibrillary acidic protein

Glc:

d-glucose

ip:

Intraperitoneal

IST:

Inter-slice thickness

KO:

Knocked out

Lac:

Lactate

LET:

Long echo time

ML:

Mobile lipids

MR:

Magnetic Resonance

MRI,:

Magnetic Resonance Imaging

MRS:

Magnetic Resonance Spectroscopy

MRSI:

Magnetic Resonance Spectroscopic Imaging

NA:

Number of averages

NAA:

N-Acetylaspartate

OA:

Oligoastrocytoma

ODG:

Oligodendroglioma

Olig2:

Oligodendrocyte transcription factor 2

PBS:

Phosphate buffered saline

PCR:

Polymerase chain reaction

PE-MRSI:

Perturbation enhanced MRSI

p.i.:

Post-implantation

PR:

Pattern recognition

PRESS:

Point-resolved spectroscopy

RARE:

Rapid acquisition with relaxation enhancement

SD:

Standard deviation

SET:

Short echo time

spv:

Spectral vector

ST:

Slice thickness

SV:

Single voxel

TAT:

Total acquisition time

Tau:

Taurine

TE:

Echo time

TR:

Recycling time

UL:

Unit length

VAPOR:

Variable pulse power and optimized relaxation delays

VOI:

Volume of interest

WHO:

World Health Organization

References

  1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109. doi:10.1007/s00401-007-0243-4

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, Stroup NE, Kruchko C, Barnholtz-Sloan JS (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro-oncol 15(Suppl 2):ii1–ii56. doi:10.1093/neuonc/not151

    PubMed  PubMed Central  Google Scholar 

  3. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    Article  CAS  PubMed  Google Scholar 

  4. Nieder C, Grosu AL, Mehta MP, Andratschke N, Molls M (2004) Treatment of malignant gliomas: radiotherapy, chemotherapy and integration of new targeted agents. Expert Rev Neurother 4(4):691–703. doi:10.1586/14737175.4.4.691

    Article  CAS  PubMed  Google Scholar 

  5. Prados MD, Seiferheld W, Sandler HM, Buckner JC, Phillips T, Schultz C, Urtasun R, Davis R, Gutin P, Cascino TL, Greenberg HS, Curran WJ Jr (2004) Phase III randomized study of radiotherapy plus procarbazine, lomustine, and vincristine with or without BUdR for treatment of anaplastic astrocytoma: final report of RTOG 9404. Int J Radiat Oncol Biol Phys 58(4):1147–1152. doi:10.1016/j.ijrobp.2003.08.024

    Article  CAS  PubMed  Google Scholar 

  6. van den Bent MJ, Carpentier AF, Brandes AA, Sanson M, Taphoorn MJ, Bernsen HJ, Frenay M, Tijssen CC, Grisold W, Sipos L, Haaxma-Reiche H, Kros JM, van Kouwenhoven MC, Vecht CJ, Allgeier A, Lacombe D, Gorlia T (2006) Adjuvant procarbazine, lomustine, and vincristine improves progression-free survival but not overall survival in newly diagnosed anaplastic oligodendrogliomas and oligoastrocytomas: a randomized European Organisation for Research and Treatment of Cancer phase III trial. J Clin Oncol 24(18):2715–2722. doi:10.1200/JCO.2005.04.6078

    Article  PubMed  Google Scholar 

  7. Weiss WA, Burns MJ, Hackett C, Aldape K, Hill JR, Kuriyama H, Kuriyama N, Milshteyn N, Roberts T, Wendland MF, DePinho R, Israel MA (2003) Genetic determinants of malignancy in a mouse model for oligodendroglioma. Cancer Res 63(7):1589–1595

    CAS  PubMed  Google Scholar 

  8. Hu X, Pandolfi PP, Li Y, Koutcher JA, Rosenblum M, Holland EC (2005) mTOR promotes survival and astrocytic characteristics induced by Pten/AKT signaling in glioblastoma. Neoplasia 7(4):356–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alcoser SY, Hollingshead MG (2011) Genetically engineered mouse models in Preclinical Anti-Cancer Drug Development. In: Kapetanović I (ed) Drug discovery and development-present and future. InTech. http://www.intechopen.com/books/drug-discovery-and-development-present-and-future/genetically-engineered-mouse-models-in-preclinical-anti-cancer-drug-development. Accessed on 28 Dec 2015

  10. Cha S, Johnson G, Wadghiri YZ, Jin O, Babb J, Zagzag D, Turnbull DH (2003) Dynamic, contrast-enhanced perfusion MRI in mouse gliomas: correlation with histopathology. Magn Reson Med 49(5):848–855. doi:10.1002/mrm.10446

    Article  PubMed  Google Scholar 

  11. Szatmari T, Lumniczky K, Desaknai S, Trajcevski S, Hidvegi EJ, Hamada H, Safrany G (2006) Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Sci 97(6):546–553. doi:10.1111/j.1349-7006.2006.00208.x

    Article  CAS  PubMed  Google Scholar 

  12. Smilowitz HM, Weissenberger J, Weis J, Brown JD, O’Neill RJ, Laissue JA (2007) Orthotopic transplantation of v-src-expressing glioma cell lines into immunocompetent mice: establishment of a new transplantable in vivo model for malignant glioma. J Neurosurg 106(4):652–659. doi:10.3171/jns.2007.106.4.652

    Article  PubMed  Google Scholar 

  13. El Meskini R, Iacovelli AJ, Kulaga A, Gumprecht M, Martin PL, Baran M, Householder DB, Van Dyke T, Weaver Ohler Z (2015) A preclinical orthotopic model for glioblastoma recapitulates key features of human tumors and demonstrates sensitivity to a combination of MEK and PI3K pathway inhibitors. Dis Model Mech 8(1):45–56. doi:10.1242/dmm.018168

    Article  CAS  PubMed  Google Scholar 

  14. Borges AR, Lopez-Larrubia P, Marques JB, Cerdan SG (2012) MR imaging features of high-grade gliomas in murine models: how they compare with human disease, reflect tumor biology, and play a role in preclinical trials. Am J Neuroradiol 33(1):24–36. doi:10.3174/ajnr.A2959

    Article  CAS  PubMed  Google Scholar 

  15. Brandes AA, Tosoni A, Franceschi E, Reni M, Gatta G, Vecht C (2008) Glioblastoma in adults. Crit Rev Oncol Hematol 67 (2):139–152. doi:10.1016/j.critrevonc.2008.02.005

    Article  PubMed  Google Scholar 

  16. Majos C, Alonso J, Aguilera C, Serrallonga M, Perez-Martin J, Acebes JJ, Arus C, Gili J (2003) Proton magnetic resonance spectroscopy ((1)H MRS) of human brain tumours: assessment of differences between tumour types and its applicability in brain tumour categorization. Eur Radiol 13(3):582–591. doi:10.1007/s00330-002-1547-3

    PubMed  Google Scholar 

  17. Sibtain NA, Howe FA, Saunders DE (2007) The clinical value of proton magnetic resonance spectroscopy in adult brain tumours. Clin Radiol 62(2):109–119. doi:10.1016/j.crad.2006.09.012

    Article  CAS  PubMed  Google Scholar 

  18. Martinez-Bisbal MC, Celda B (2009) Proton magnetic resonance spectroscopy imaging in the study of human brain cancer. Q J Nucl Med Mol Imaging 53(6):618–630

    CAS  PubMed  Google Scholar 

  19. Nelson SJ, Graves E, Pirzkall A, Li X, Antiniw Chan A, Vigneron DB, McKnight TR (2002) In vivo molecular imaging for planning radiation therapy of gliomas: an application of 1 H MRSI. J Magn Reson Imaging 16(4):464–476. doi:10.1002/jmri.10183

    Article  PubMed  Google Scholar 

  20. Nelson SJ, Vigneron DB, Dillon WP (1999) Serial evaluation of patients with brain tumors using volume MRI and 3D 1 H MRSI. NMR Biomed 12(3):123–138. doi:10.1002/(SICI)1099-1492(199905)12:3<123::AID-NBM541>3.0.CO;2-Y

    Article  CAS  PubMed  Google Scholar 

  21. Delgado-Goni T, Martin-Sitjar J, Simoes RV, Acosta M, Lope-Piedrafita S, Arus C (2013) Dimethyl sulfoxide (DMSO) as a potential contrast agent for brain tumors. NMR Biomed 26(2):173–184. doi:10.1002/nbm.2832

    Article  CAS  PubMed  Google Scholar 

  22. Simoes RV, Garcia-Martin ML, Cerdan S, Arus C (2008) Perturbation of mouse glioma MRS pattern by induced acute hyperglycemia. NMR Biomed 21(3):251–264. doi:10.1002/nbm.1188

    Article  CAS  PubMed  Google Scholar 

  23. Simoes RV, Delgado-Goni T, Lope-Piedrafita S, Arus C (2010) 1 H-MRSI pattern perturbation in a mouse glioma: the effects of acute hyperglycemia and moderate hypothermia. NMR Biomed 23(1):23–33. doi:10.1002/nbm.1421

    Article  CAS  PubMed  Google Scholar 

  24. https://mouse.ncifcrf.gov/available_details.asp?ID=01XD3. Accessed on 28 Dec 2015

  25. Acosta M (2013) Mejora de los modelos preclínicos de tumores cerebrales. Aplicación a la caracterización ex vivo e in vivo de agentes de contraste nanoparticulados para imagen de resonancia magnetica. Universitat Autònoma de Barcelona. http://hdl.handle.net/10803/128995. Accessed on 28 Dec 2015

  26. Ciezka M (2015) Improvement of protocols for brain cancer diagnosis and therapy response monitoring using magnetic resonance based molecular imaging strategies. Universitat Autònoma de Barcelona

  27. Delgado-Goni T, Julia-Sape M, Candiota AP, Pumarola M, Arus C (2014) Molecular imaging coupled to pattern recognition distinguishes response to temozolomide in preclinical glioblastoma. NMR Biomed 27(11):1333–1345. doi:10.1002/nbm.3194

    Article  CAS  PubMed  Google Scholar 

  28. Simoes RV, Ortega-Martorell S, Delgado-Goni T, Le Fur Y, Pumarola M, Candiota AP, Martin J, Stoyanova R, Cozzone PJ, Julia-Sape M, Arus C (2012) Improving the classification of brain tumors in mice with perturbation enhanced (PE)-MRSI. Integr Biol 4 (2):183–191. doi:10.1039/c2ib00079b

    Article  Google Scholar 

  29. Masters JRW, Palsson B (2002) Human cell culture. Cancer cell lines. Kluwer, New York

    Book  Google Scholar 

  30. Yi L, Zhou C, Wang B, Chen T, Xu M, Xu L, Feng H (2013) Implantation of GL261 neurospheres into C57/BL6 mice: a more reliable syngeneic graft model for research on glioma-initiating cells. Int J Oncol 43(2):477–484. doi:10.3892/ijo.2013.1962

    CAS  PubMed  Google Scholar 

  31. Mullins CS, Schneider B, Stockhammer F, Krohn M, Classen CF, Linnebacher M (2013) Establishment and characterization of primary glioblastoma cell lines from fresh and frozen material: a detailed comparison. PloS one 8(8):e71070. doi:10.1371/journal.pone.0071070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shimada Y, Maeda M, Watanabe G, Yamasaki S, Komoto I, Kaganoi J, Kan T, Hashimoto Y, Imoto I, Inazawa J, Imamura M (2003) Cell culture in esophageal squamous cell carcinoma and the association with molecular markers. Clin Cancer Res 9(1):243–249

    CAS  PubMed  Google Scholar 

  33. Barker M, Hoshino T, Gurcay O, Wilson CB, Nielsen SL, Downie R, Eliason J (1973) Development of an animal brain tumor model and its response to therapy with 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Res 33(5):976–986

    CAS  PubMed  Google Scholar 

  34. Halfter H, Kremerskothen J, Weber J, Hacker-Klom U, Barnekow A, Ringelstein EB, Stogbauer F (1998) Growth inhibition of newly established human glioma cell lines by leukemia inhibitory factor. J Neurooncol 39(1):1–18. doi:10.1023/A:1005901423332

    Article  CAS  PubMed  Google Scholar 

  35. Onda K, Nagai S, Tanaka R, Morii K, Yoshimura JI, Tsumanuma I, Kumanishi T (1999) Establishment of two glioma cell lines from two surgical specimens obtained at different times from the same individual. J Neurooncol 41(3):247–254. doi:10.1023/A:1006172608019

    Article  CAS  PubMed  Google Scholar 

  36. Goike HM, Asplund AC, Pettersson EH, Liu L, Ichimura K, Collins VP (2000) Cryopreservation of viable human glioblastoma xenografts. Neuropathol Appl Neurobiol 26(2):172–176. doi:10.1046/j.1365-2990.2000.026002172.x

    Article  CAS  PubMed  Google Scholar 

  37. Sundlisaeter E, Wang J, Sakariassen PO, Marie M, Mathisen JR, Karlsen BO, Prestegarden L, Skaftnesmo KO, Bjerkvig R, Enger PO (2006) Primary glioma spheroids maintain tumourogenicity and essential phenotypic traits after cryopreservation. Neuropathol Appl Neurobiol 32(4):419–427. doi:10.1111/j.1365-2990.2006.00744.x

    Article  CAS  PubMed  Google Scholar 

  38. Chong YK, Toh TB, Zaiden N, Poonepalli A, Leong SH, Ong CE, Yu Y, Tan PB, See SJ, Ng WH, Ng I, Hande MP, Kon OL, Ang BT, Tang C (2009) Cryopreservation of neurospheres derived from human glioblastoma multiforme. Stem cells 27(1):29–39. doi:10.1634/stemcells.2008-0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Heiss WD, Raab P, Lanfermann H (2011) Multimodality assessment of brain tumors and tumor recurrence. J Nucl Med 52(10):1585–1600. doi:10.2967/jnumed.110.084210

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Ministerio de Economía y Competitividad (MINECO) grants MARESCAN (SAF 2011–23870), MOLIMAGLIO (SAF2014-52332-R) and SAF2012-37417. Also funded by the ISCiii-Subdirección General de Evaluación and European Regional Development Fund (ERDF) [RETICS to JMC (RD12/0019/0002; Red de Terapia Celular)], Spain, and by Centro de Investigación Biomédica en Red—Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, http://www.ciber-bbn.es/en), an initiative of the Instituto de Salud Carlos III (Spain) co-funded by EU Fondo Europeo de Desarrollo Regional (FEDER). M. Ciezka held an FI-DGR predoctoral fellowship (FI-DGR 2012) from the Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Paula Candiota.

Additional information

M. Ciezka and M. Acosta have contributed equally to data acquisition.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciezka, M., Acosta, M., Herranz, C. et al. Development of a transplantable glioma tumour model from genetically engineered mice: MRI/MRS/MRSI characterisation. J Neurooncol 129, 67–76 (2016). https://doi.org/10.1007/s11060-016-2164-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-016-2164-3

Keywords

Navigation