Skip to main content

Advertisement

Log in

Nrdp1-mediated ErbB3 degradation inhibits glioma cell migration and invasion by reducing cytoplasmic localization of p27Kip1

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

We previously reported that loss of Nrdp1 contributes to human glioma progression by reducing apoptosis. However, the role of Nrdp1 in glioma migration and invasion has not been investigated. Here, we report that ErbB3, a substrate of Nrdp1, is undetectable in normal brain tissues and grade II/III glioma tissues, but is abundant in a certain percentage of grade IV glioma tissues and is associated with the loss of Nrdp1. This suggests that Nrdp1 may be involved in glioma migration and invasion by regulating ErbB3. Thus, the role of Nrdp1/ErbB3 signaling in glioma cell migration and invasion was investigated using Nrdp1 loss- and gain-of-function. The results show that down-regulation of Nrdp1 by use of short hairpin RNA promoted glioma cell migration and invasion. In contrast, overexpression of Nrdp1 significantly inhibited glioma cell migration and invasion. Further investigation on molecular targets revealed that Nrdp1 decreased the level of ErbB3, which resulted in decreasing p-AKT thereby reducing cytoplasmic p27Kip1. Taken together, these findings suggest that Nrdp1-mediated ErbB3 degradation suppresses glioma migration and invasion and that loss of Nrdp1 may amplify ErbB3 signaling to contribute to glioma migration and invasion. These findings suggest that Nrdp1 may be a target for glioma therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507

    Article  CAS  PubMed  Google Scholar 

  2. Clarke J, Butowski N, Chang S (2010) Recent advances in therapy for glioblastoma. Arch Neurol 67(3):279–283

    Article  PubMed  Google Scholar 

  3. Holand K, Salm F, Arcaro A (2011) The phosphoinositide 3-kinase signaling pathway as a therapeutic target in grade IV brain tumors. Curr Cancer Drug Targets 11(8):894–918

    Article  CAS  PubMed  Google Scholar 

  4. Buonanno A, Fischbach GD (2001) Neuregulin and ErbB receptor signaling pathways in the nervous system. Curr Opin Neurobiol 11(3):287–296

    Article  CAS  PubMed  Google Scholar 

  5. Burden S, Yarden Y (1997) Neuregulins and their receptors: a versatile signaling module in organogenesis and oncogenesis. Neuron 18(6):847–855

    Article  CAS  PubMed  Google Scholar 

  6. Stern DF (2003) ErbBs in mammary development. Exp Cell Res 284(1):89–98

    Article  CAS  PubMed  Google Scholar 

  7. Yen L et al (2006) Loss of Nrdp1 enhances ErbB2/ErbB3-dependent breast tumor cell growth. Cancer Res 66(23):11279–11286

    Article  CAS  PubMed  Google Scholar 

  8. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2(2):127–137

    Article  CAS  PubMed  Google Scholar 

  9. Salomon DS et al (1995) Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 19(3):183–232

    Article  CAS  PubMed  Google Scholar 

  10. Holbro T et al (2003) The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci USA 100(15):8933–8938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mujoo K et al (2014) Regulation of ERBB3/HER3 signaling in cancer. Oncotarget 5(21):10222–10236

    Article  PubMed  PubMed Central  Google Scholar 

  12. Qiu XB, Goldberg AL (2002) Nrdp1/FLRF is a ubiquitin ligase promoting ubiquitination and degradation of the epidermal growth factor receptor family member, ErbB3. Proc Natl Acad Sci USA 99(23):14843–14848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lu H et al (2014) Nrdp1 inhibits growth of colorectal cancer cells by nuclear retention of p27. Tumour Biol 35(9):8639–8643

    Article  CAS  PubMed  Google Scholar 

  14. Shi H et al (2014) Lower expression of Nrdp1 in human glioma contributes tumor progression by reducing apoptosis. IUBMB Life 66(10):704–710

    Article  CAS  PubMed  Google Scholar 

  15. Fry WH et al (2011) Quantity control of the ErbB3 receptor tyrosine kinase at the endoplasmic reticulum. Mol Cell Biol 31(14):3009–3018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Andersson U et al (2004) Epidermal growth factor receptor family (EGFR, ErbB2-4) in gliomas and meningiomas. Acta Neuropathol 108(2):135–142

    Article  CAS  PubMed  Google Scholar 

  17. Berezowska S, Schlegel J (2011) Targeting ErbB receptors in high-grade glioma. Curr Pharm Des 17(23):2468–2487

    Article  CAS  PubMed  Google Scholar 

  18. Yarden Y, Pines G (2012) The ERBB network: at last, cancer therapy meets systems biology. Nat Rev Cancer 12(8):553–563

    Article  CAS  PubMed  Google Scholar 

  19. Junttila TT et al (2009) Ligand-independent HER2/HER3/PI3 K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell 15(5):429–440

    Article  CAS  PubMed  Google Scholar 

  20. Lahlou H et al (2012) Uncoupling of PI3 K from ErbB3 impairs mammary gland development but does not impact on ErbB2-induced mammary tumorigenesis. Cancer Res 72(12):3080–3090

    Article  CAS  PubMed  Google Scholar 

  21. Tao JJ et al (2014) Antagonism of EGFR and HER3 enhances the response to inhibitors of the PI3K-AKT pathway in triple-negative breast cancer. Sci Signal 7(318):r29

    Article  Google Scholar 

  22. Shin I et al (2002) PKB/AKT mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med 8(10):1145–1152

    Article  CAS  PubMed  Google Scholar 

  23. Liang J et al (2002) PKB/AKT phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 8(10):1153–1160

    Article  CAS  PubMed  Google Scholar 

  24. Knighton DR et al (1993) Structural features that specify tyrosine kinase activity deduced from homology modeling of the epidermal growth factor receptor. Proc Natl Acad Sci USA 90(11):5001–5005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nourse J et al (1994) Interleukin-2-mediated elimination of the p27Kip1 cyclin-dependent kinase inhibitor prevented by rapamycin. Nature 372(6506):570–573

    Article  CAS  PubMed  Google Scholar 

  26. Coats S et al (1996) Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science 272(5263):877–880

    Article  CAS  PubMed  Google Scholar 

  27. McAllister SS et al (2003) Novel p27(kip1) C-terminal scatter domain mediates Rac-dependent cell migration independent of cell cycle arrest functions. Mol Cell Biol 23(1):216–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Besson A et al (2004) p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev 18(8):862–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81201264, 81272777 and 81400127), the China Postdoctoral Science Foundation (2014M551662) and Jiangsu Planned Projects for Postdoctoral Research Funds.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rutong Yu.

Additional information

Hengliang Shi and Hui Gong have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

a The GFP photograph shows the stable cell line with silenced Nrdp1 in A172 cells; bar 50 μm. b The GFP photograph shows the stable cell line with silenced Nrdp1 in U118 cells; bar 50 μm. c Representative blots show the silencing efficiency of Nrdp1 shRNA and the up-regulation of ErbB3 upon silencing of Nrdp1 in A172 cells. d Representative blots show the silencing efficiency of Nrdp1 shRNA and the up-regulation of ErbB3 upon silencing of Nrdp1 in U118 cells. Supplementary material 1 (TIFF 11,096 kb)

Fig. S2

a The GFP image shows the efficiency of plasmid transfection; bar 100 μm. b The overexpression of Flag-Nrdp1 is shown by immunofluorescence staining with anti-Flag antibody; bar 100 μm. c Representative blots show the expression efficiency of Nrdp1 and the down-regulation of ErbB3 upon overexpression of Nrdp1. Supplementary material 2 (TIFF 12,574 kb)

Fig. S3

a The expression profiles of Nrdp1, ErbB3 and p27Kip1 in U251, U87, SHG44, A172, and U118 cell lines. b Knockdown of endogenous Nrdp1 in U251, U87 and SHG44 cells resulted in an increase of ErbB3 expression in these three cell lines. Supplementary material 3 (TIFF 2073 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, H., Gong, H., Cao, K. et al. Nrdp1-mediated ErbB3 degradation inhibits glioma cell migration and invasion by reducing cytoplasmic localization of p27Kip1 . J Neurooncol 124, 357–364 (2015). https://doi.org/10.1007/s11060-015-1851-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-1851-9

Keywords

Navigation