Skip to main content

Advertisement

Log in

Combination treatment of TRAIL, DFMO and radiation for malignant glioma cells

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has shown potent and cancer-selective killing activity and drawn considerable attention as a promising therapy for cancer. Another promising cancer therapy is difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, which is oraly administered and well tolerated. Nevertheless, many types of cancer, including gliomas, have exhibited resistance to TRAIL-induced apoptosis and similarly the potency of DFMO should be enhanced to optimize therapeutic efficacy. In this study we sought to determine whether DFMO, in combination with TRAIL and radiation, could result in an enhanced anti-glioma effect in vitro. We investigated the effect of DFMO, TRAIL and radiation in various combinations on a panel of glioblastoma cell lines (A172, T98G, D54, U251MG). Viability and proliferation of the cells were examined with trypan blue exclusion assay, crystal violet and xCELLigence system. Apoptosis (Annexin-PI), cell cycle and activation of caspase-8 were tested with flow cytometry. BAD protein levels were determined by Western blot analysis. DFMO induced BAD overexpression. Combination treatment with DFMO, TRAIL and radiation significantly reduced cell viability in all cell lines tested. Increased induction of cell death and cell cycle arrest was confirmed with flow cytometry in A172 and D54 cell lines, while enhanced activation of annexin and caspase-8 was revealed in U251MG and T98G cells. The treatment of glioblastoma cell lines with combination of DFMO, TRAIL and radiation showed an enhanced effect. This combination treatment may represent a novel strategy for targeting glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu Y, Shete S, Etzel CJ, Scheurer M, Alexiou G, Armstrong G et al (2010) Polymorphisms of LIG4, BTBD2, HMGA2, and RTEL1 genes involved in the double-strand break repair pathway predict glioblastoma survival. J Clin Oncol 28:2467–2474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Alexiou GA, Goussia A, Voulgaris S, Fotopoulos AD, Fotakopoulos G, Ntoulia A, Zikou A, Tsekeris P, Argyropoulou MI, Kyritsis AP (2012) Prognostic significance of MRP5 immunohistochemical expression in glioblastoma. Cancer Chemother Pharmacol 69:1387–1391

    Article  CAS  PubMed  Google Scholar 

  3. Alexiou GA, Tsamis K, Kyritsis AP. Targeting tumor necrosis factor–related apoptosis-inducing ligand (TRAIL): a promising therapeutic strategy in gliomas. Semin Pediatr Neurol. (in press) doi:10.1016/j.spen.2014.12.002

  4. Tsamis KI, Alexiou GA, Vartholomatos E, Kyritsis AP (2013) Combination treatment for glioblastoma cells with tumor necrosis factor-related apoptosis-inducing ligand and oncolytic adenovirus delta-24. Cancer Invest 31:630–638

    Article  CAS  PubMed  Google Scholar 

  5. Verbrugge I, de Vries E, Tait SW, Wissink EH, Walczak H, Verheij M, Borst J (2008) Ionizing radiation modulates the TRAIL death-inducing signaling complex, allowing bypass of the mitochondrial apoptosis pathway. Oncogene 27:574–584

    Article  CAS  PubMed  Google Scholar 

  6. Kim MR, Lee JY, Park MT, Chun YJ, Jang YJ, Kang CM, Kim HS, Cho CK, Lee YS, Jeong HY, Lee SJ (2001) Ionizing radiation can overcome resistance to TRAIL in TRAIL-resistant cancer cells. FEBS Lett 505:179–184

    Article  CAS  PubMed  Google Scholar 

  7. Ueda A, Araie M, Kubota S (2008) Polyamine depletion induces G1 and S phase arrest in human retinoblastoma Y79 cells. Cancer Cell Int 21(8):2

    Article  Google Scholar 

  8. Laukaitis CM, Gerner EW (2011) DFMO: targeted risk reduction therapy for colorectal neoplasia. Best Pract Res Clin Gastroenterol 25:495–506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Redgate ES, Alexander D, Magra TR, Henretty JS, Patrene KD, Boggs SS (2001) The effect of DFMO induced uptake of [3H] putrescine on human glioma cells. J Neurooncol 55:71–80

    Article  CAS  PubMed  Google Scholar 

  10. Tsukahara T, Tamura M, Yamazaki H, Kurihara H, Matsuzaki S (1992) The additive effect of alpha-difluoromethylornithine (DFMO) and radiation therapy on a rat glioma model. J Cancer Res Clin Oncol 118:171–175

    Article  CAS  PubMed  Google Scholar 

  11. Puduvalli VK, Sampath D, Bruner JM, Nangia J, Xu R, Kyritsis AP (2005) TRAIL-induced apoptosis in gliomas is enhanced by Akt-inhibition and is independent of JNK activation. Apoptosis 10:233–243

    Article  CAS  PubMed  Google Scholar 

  12. Mitlianga PG, Sioka C, Vartholomatos G et al (2006) p53 enhances the delta-24 conditionally replicative adenovirus anti-glioma effect. Oncol Rep 15:149–153

    CAS  PubMed  Google Scholar 

  13. Taghiyev AF, Guseva NV, Harada H, Knudson CM, Rokhlin OW, Cohen MB (2003) Overexpression of BAD potentiates sensitivity to tumor necrosis factor-related apoptosis-inducing ligand treatment in the prostatic carcinoma cell line LNCaP. Mol Cancer Res 1:500–507

    CAS  PubMed  Google Scholar 

  14. Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC, Curtis C, Watts C, Tavaré S (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A 110:4009–4014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Meyskens FL Jr, Gerner EW (1999) Development of difluoromethylornithine (DFMO) as a chemoprevention agent. Clin Cancer Res 5:945–951

    CAS  PubMed  Google Scholar 

  16. Levin VA, Hess KR, Choucair A, Flynn PJ, Jaeckle KA, Kyritsis AP, Yung WK, Prados MD, Bruner JM, Ictech S, Gleason MJ, Kim HW (2003) Phase III randomized study of postradiotherapy chemotherapy with combination alpha-difluoromethylornithine-PCV versus PCV for anaplastic gliomas. Clin Cancer Res 9:981–990

    CAS  PubMed  Google Scholar 

  17. Levin VA, Uhm JH, Jaeckle KA, Choucair A, Flynn PJ, Yung WKA, Prados MD, Bruner JM, Chang SM, Kyritsis AP, Gleason MJ, Hess KR (2000) Phase III randomized study of postradiotherapy chemotherapy with alpha-difluoromethylornithine-procarbazine, N-(2-chloroethyl)-N′-cyclohexyl-N-nitrosurea, vincristine (DFMO-PCV) versus PCV for glioblastoma multiforme. Clin Cancer Res 6:3878–3884

    CAS  PubMed  Google Scholar 

  18. Terzis AJ, Pedersen PH, Feuerstein BG, Arnold H, Bjerkvig R, Deen DF (1998) Effects of DFMO on glioma cell proliferation, migration and invasion in vitro. J Neurooncol 36:113–121

    Article  CAS  PubMed  Google Scholar 

  19. Koomoa DL, Geerts D, Lange I, Koster J, Pegg AE, Feith DJ, Bachmann AS (2013) DFMO/eflornithine inhibits migration and invasion downstream of MYCN and involves p27Kip1 activity in neuroblastoma. Int J Oncol 42:1219–1228

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Fong LY, Nguyen VT, Pegg AE, Magee PN (2001) Alpha-difluoromethylornithine induction of apoptosis: a mechanism which reverses pre-established cell proliferation and cancer initiation in esophageal carcinogenesis in zinc-deficient rats. Cancer Epidemiol Biomark Prev 10:191–199

    CAS  Google Scholar 

  21. Lee JJ, Kim BC, Park MJ, Lee YS, Kim YN, Lee BL, Lee JS (2011) PTEN status switches cell fate between premature senescence and apoptosis in glioma exposed to ionizing radiation. Cell Death Differ 18:666–677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA et al (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104:155–162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M et al (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5:157–163

    Article  CAS  PubMed  Google Scholar 

  24. Kuijlen JM, Bremer E, Mooij JJ, den DunnenWF WF, Helfrich W (2010) Review: on TRAIL for malignant glioma therapy? Neuropathol Appl Neurobiol 36:168–182

    Article  CAS  PubMed  Google Scholar 

  25. Marini P, Schmid A, Jendrossek V et al (2005) Irradiation specifically sensitises solid tumour cell lines to TRAIL mediated apoptosis. BMC Cancer 5:5

    Article  PubMed Central  PubMed  Google Scholar 

  26. Yao KC, Komata T, Kondo Y, Kanzawa T, Kondo S, Germano IM (2003) Molecular response of human glioblastoma multiforme cells to ionizing radiation: cell cycle arrest, modulation of the expression of cyclin-dependent kinase inhibitors, and autophagy. J Neurosurg 98:378–384

    Article  CAS  PubMed  Google Scholar 

  27. Yount GL, Afshar G, Ries S et al (2001) Transcriptional activation of TRADD mediates p53-independent radiation-induced apoptosis of glioma cells. Oncogene 20:2826–2835

    Article  CAS  PubMed  Google Scholar 

  28. Dietrich J, Han R, Yang Y, Mayer-Pröschel M, Noble M (2006) CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. J Biol 5:22

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Joseph and Esther Gani Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Alexiou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexiou, G.A., Tsamis, K.I., Vartholomatos, E. et al. Combination treatment of TRAIL, DFMO and radiation for malignant glioma cells. J Neurooncol 123, 217–224 (2015). https://doi.org/10.1007/s11060-015-1799-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-1799-9

Keywords

Navigation