Skip to main content
Log in

Altered global histone-trimethylation code and H3F3A-ATRX mutation in pediatric GBM

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Mutations in H3.3-ATRX-DAXX chromatin remodeling pathway have been reported in pediatric GBMs. H3.3 (H3F3A) mutations may affect transcriptional regulation by altered global histone-methylation. Therefore, we analyzed yet partly understood global histone code (H3K-4/9/27/36) trimethylation pattern in H3F3A-ATRX mutants and wild-type. H3F3A, HIST1H3B, IDH1, ATRX, DAXX and Tp53 mutations were identified by sequencing/immunohistochemistry in 27 pediatric GBMs. Global histone-methylation H3K-4/9/27/36me3 and Polycomb-protein EZH2 expression were evaluated by immunohistochemistry. H3F3A-ATRX mutation was observed in 66.7 % (18/27) of pediatric GBMs. K27M and G34R-H3F3A mutations were found in 37 % (10/27) and 14.8 % (4/27) patients respectively. G34V-H3F3A, HIST1H3B and IDH1 mutations were absent. Notably, commonest global histone-methylation mark lost was H3K27me3 (17/25, 68 %) followed by H3K4me3 (45.5 %, 10/22) and H3K9me3 (18.2 %, 4/22). Global H3K36me3 showed no loss. Most significant observation was loss of one or more histone-trimethylation mark in 80 % (20/25) pediatric GBMs. Notably, simultaneous loss of H3K27me3 and H3K4me3 were present in 7/22 (31.8 %) of pediatric GBMs. Low expression of EZH2 was found in 12/24 (50 %) of cases. However no significant correlation of loss of histone-marks or EZH2 expression with H3F3A-ATRX mutants (loss of at least one histone-marks in 87.5 % (14/16) cases) versus wild-types (loss of at least one histone-marks in 75 % (6/8) cases) was seen. The present study highlights for the first time combinatorial loss of one or more histone-trimethylation marks associated with majority of pediatric GBMs and the finding suggests significant role of histone-code in the molecular biology that underlies pediatric GBMs. Hence therapies for patients with particular combinations of histone modifications present opportunity to design innovative patient-tailored treatment protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Broniscer A, Gajjar A (2004) Supratentorial high-grade astrocytoma and diffuse brainstem glioma: two challenges for the pediatric oncologist. Oncologist 9:197–206

    Article  PubMed  Google Scholar 

  2. Tamber MS, Rutka JT (2003) Pediatric supratentorial high-grade gliomas. Neurosurg Focus 14:e1 Review

  3. Suri V, Das P, Pathak P, Jain A, Sharma MC et al (2009) Pediatric glioblastomas: a histopathological and molecular genetic study. Neuro Oncol 11:274–280

    Article  PubMed Central  PubMed  Google Scholar 

  4. Gilheeney SW, Kieran MW (2012) Differences in molecular genetics between pediatric and adult malignant astrocytomas: age matters. Future Oncol 8:549–558

    Article  CAS  PubMed  Google Scholar 

  5. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E et al (2012) Driver mutations in histone H3.3 and chromatin remodeling genes in pediatric glioblastoma. Nature 482:226–231

    Article  CAS  PubMed  Google Scholar 

  6. Appin CL, Brat DJ (2014) Molecular genetics of gliomas. Cancer J 20(1):66–72

    Article  CAS  PubMed  Google Scholar 

  7. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and nonbrainstem glioblastomas. Nat Genet 44:251–253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Saratsis AM, Kambhampati M, Snyder K, Yadavilli S, Devaney JM et al (2014) Comparative multidimensional molecular analyses of pediatric diffuse intrinsic pontine glioma reveals distinct molecular subtypes. Acta Neuropathol 127:881–895

    Article  CAS  PubMed  Google Scholar 

  9. Lewis PW, Elsaesser SJ, Noh KM, Stadler SC, Allis CD (2010) Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci USA 107:14075–14080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437

    Article  CAS  PubMed  Google Scholar 

  11. Bender S, Tang Y, Lindroth AM, Hovestadt V, Jones DT et al (2013) Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 24:660–672

    Article  CAS  PubMed  Google Scholar 

  12. Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838–849

    Article  CAS  PubMed  Google Scholar 

  13. klose RJ, Zhang Y (2007) Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol 8:307–318

    Article  CAS  PubMed  Google Scholar 

  14. Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469:343–349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Liu L, Xu Z, Zhong L, Wang H, Jiang S et al (2013) Prognostic value of EZH2 expression and activity in renal cell carcinoma: a prospective study. PLoS ONE 8:e81484

    Article  PubMed Central  PubMed  Google Scholar 

  16. Holm K, Grabau D, Lövgren K, Aradottir S, Gruvberger-Saal S et al (2012) Global H3K27 trimethylation and EZH2 abundance in breast tumor subtypes. Mol Oncol 6:494–506

    Article  CAS  PubMed  Google Scholar 

  17. Shen L, Cui J, Liang S, Pang Y, Liu P (2013) Update of research on the role of EZH2 in cancer progression. Onco Targets Ther 6:321–324

    Article  PubMed Central  PubMed  Google Scholar 

  18. Orzan F, Pellegatta S, Poliani PL, Pisati F, Caldera V et al (2011) Enhancer of Zeste 2 (EZH2) is up-regulated in malignant gliomas and in glioma stem-like cells. Neuropathol Appl Neurobiol 37:381–394

    Article  CAS  PubMed  Google Scholar 

  19. Venneti S, Garimella MT, Sullivan LM, Martinez D, Huse JT et al (2013) Evaluation of histone 3 lysine 27 trimethylation (H3K27me3) and enhancer of Zest 2 (EZH2) in pediatric glial and glioneuronal tumors shows decreased H3K27me3 in H3F3A K27M mutant glioblastomas. Brain Pathol 23:558–564

    Article  CAS  PubMed  Google Scholar 

  20. Chan KM, Fang D, Gan H, Hashizume R, Yu C et al (2013) The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev 27:985–990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lewis PW, Müller MM, Koletsky MS, Cordero F, Lin S et al (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340:857–861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Zhang A, Xu B, Sun Y, Lu X, Gu R et al (2012) Dynamic changes of histone H3 trimethylated at positions K4 and K27 in human oocytes and preimplantation embryos. Fertil Steril 98:1009–1016

    Article  CAS  PubMed  Google Scholar 

  23. Nakazawa T, Kondo T, Ma D, Niu D, Mochizuki K et al (2012) Global histone modification of histone H3 in colorectal cancer and its precursor lesions. Hum Pathol 43:834–842

    Article  CAS  PubMed  Google Scholar 

  24. Rogenhofer S, Kahl P, Mertens C, Hauser S, Hartmann W et al (2012) Global histone H3 lysine 27 (H3K27) methylation levels and their prognostic relevance in renal cell carcinoma. BJU Int 109:459–465

    Article  CAS  PubMed  Google Scholar 

  25. Dubuc AM, Remke M, Korshunov A, Northcott PA, Zhan SH et al (2013) Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. Acta Neuropathol 125:373–384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Watanabe T, Morinaga S, Akaike M, Numata M, Tamagawa H et al (2012) The cellular level of histone H3 lysine 4 dimethylation correlates with response to adjuvant gemcitabine in Japanese pancreatic cancer patients treated with surgery. Eur J Surg Oncol 38:1051–1057

    Article  CAS  PubMed  Google Scholar 

  27. Tamagawa H, Oshima T, Numata M, Yamamoto N, Shiozawa M et al (2013) Global histone modification of H3K27 correlates with the outcomes in patients with metachronous liver metastasis of colorectal cancer. Eur J Surg Oncol 39:655–661

    Article  CAS  PubMed  Google Scholar 

  28. Chen YW, Kao SY, Wang HJ, Yang MH (2013) Histone modification patterns correlate with patient outcome in oral squamous cell carcinoma. Cancer 119:4259–4267

    Article  CAS  PubMed  Google Scholar 

  29. Chapman-Rothe N, Curry E, Zeller C, Liber D, Stronach E et al (2013) Chromatin H3K27me3/H3K4me3 histone marks define gene sets in high-grade serous ovarian cancer that distinguish malignant, tumour-sustaining and chemo-resistant ovarian tumour cells. Oncogene 32:4586–4592

    Article  CAS  PubMed  Google Scholar 

  30. Rogenhofer S, Miersch H, Göke F, Kahl P, Wieland WF et al (2013) Histone methylation defines an epigenetic entity in penile squamous cell carcinoma. J Urol 189:1117–1122

    Article  CAS  PubMed  Google Scholar 

  31. Jha P, Suri V, Sharma V, Singh G, Sharma MC et al (2011) IDH1 mutations in gliomas: first series from a tertiary care centre in India with comprehensive review of literature. Exp Mol Pathol 91:385–393

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15:2343–2360

    Article  CAS  PubMed  Google Scholar 

  33. Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13:343–357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Venneti S, Felicella MM, Coyne T, Phillips JJ, Gorovets D et al (2013) Histone 3 lysine 9 trimethylation is differentially associated with isocitrate dehydrogenase mutations in oligodendrogliomas and high-grade astrocytomas. J Neuropathol Exp Neurol 72:298–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Fontebasso AM, Schwartzentruberentruber J, Khuong-Quang DA, Liu XY, Sturm D et al (2013) Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathol 125:659–669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Khuong-Quang DA, Buczkowicz P, Rakopoulos P, Liu XY, Fontebasso AM et al (2012) K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124:439–447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Fontebasso AM, Liu XY, Sturm D, Jabado N (2013) Chromatin remodeling defects in pediatric and young adult glioblastoma: a tale of a variant histone 3 tail. Brain Pathol 23:210–216

    Article  CAS  PubMed  Google Scholar 

  38. Venneti S, Santi M, Felicella MM, Yarilin D, Phillips JJ et al (2014) A sensitive and specific histopathologic prognostic marker for H3F3A K27M mutant pediatric glioblastomas. Acta Neuropathol 128(5):743–753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Buczkowicz P, Bartels U, Bouffet E, Becher O, Hawkins C (2014) Histopathological spectrum of paediatric diffuse intrinsic pontine glioma: diagnostic and therapeutic implications. Acta Neuropathol. doi:10.1007/s00401-014-1319-6

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Indian Council of Medical Research (ICMR), Neuro Sciences Centre and Department of Pathology, All India Institute of Medical Sciences, New Delhi, India for funding. The authors are also thankful to Dr. Supriya mallick, Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, for assistance in patient follow up and Dr. Mitali Mukerji, Genomics and Molecular Medicine, (CSIR-IGIB), New Delhi for providing genomics facility for this work.

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chitra Sarkar.

Additional information

Pankaj Pathak and Prerana Jha have equally contributed to this study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, P., Jha, P., Purkait, S. et al. Altered global histone-trimethylation code and H3F3A-ATRX mutation in pediatric GBM. J Neurooncol 121, 489–497 (2015). https://doi.org/10.1007/s11060-014-1675-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1675-z

Keywords

Navigation