Skip to main content

Advertisement

Log in

Co-administration of ABT-737 and SAHA induces apoptosis, mediated by Noxa upregulation, Bax activation and mitochondrial dysfunction in PTEN-intact malignant human glioma cell lines

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

We previously observed that glioma cells are differentially sensitive to ABT-737 and, when used as a single-agent, this drug failed to induce apoptosis. Identification of therapeutic strategies to enhance the efficacy of the Bcl-2 inhibitor ABT-737 in human glioma is of interest. Histone deacetylation inhibitors (HDACI) are currently being assessed clinically in patients with glioma, as regulation of epigenetic abnormalities is expected to produce pro-apoptotic effects. We hypothesized that co-treatment of glioma with a BH3-mimetic and HDACI may induce cellular death. We assessed the combination of ABT-737 and HDACI SAHA in established and primary cultured glioma cells. We found combination treatment led to significant cellular death when compared to either drug as single agent and demonstrated activation of the caspase cascade. This enhanced apoptosis also appears dependent upon the loss of mitochondrial membrane potential and the release of cytochrome c and AIF into the cytosol. The upregulation of Noxa, truncation of Bid, and activation of Bax caused by this combination were important factors for cell death and the increased levels of Noxa functioned to sequester Mcl-1. This combination was less effective in PTEN-deficient glioma cells. Both genetic and pharmacologic inactivation of the PI3K/Akt signaling pathway sensitized PTEN-deleted glioma cells to the combination. This study demonstrates that antagonizing apoptosis-resistance pathways, such as targeting the Bcl-2 family in combination with epigenetic modifiers, may induce cell death. These findings extend our previous observations that targeting the PI3K/Akt pathway may be additionally necessary to promote apoptosis in cancers lacking PTEN functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maher EA et al (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 15(11):1311–1333

    Article  CAS  PubMed  Google Scholar 

  2. Wen PY et al (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507

    Article  CAS  PubMed  Google Scholar 

  3. Omuro AM et al (2007) Lessons learned in the development of targeted therapy for malignant gliomas. Mol Cancer Ther 6(7):1909–1919

    Article  CAS  PubMed  Google Scholar 

  4. Hanahan D et al (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  5. Thaker NG et al (2010) Functional genomic analysis of glioblastoma multiforme through short interfering RNA screening: a paradigm for therapeutic development. Neurosurg Focus 28(1):E4

    Article  PubMed  Google Scholar 

  6. Thaker NG et al (2009) Identification of survival genes in human glioblastoma cells by small interfering RNA screening. Mol Pharmacol 76(6):1246–1255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Chen S et al (2007) Mcl-1 down-regulation potentiates ABT-737 lethality by cooperatively inducing Bak activation and Bax translocation. Cancer Res 67(2):782–791

    Article  CAS  PubMed  Google Scholar 

  8. Oltersdorf T et al (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435(7042):677–681

    Article  CAS  PubMed  Google Scholar 

  9. High LM et al (2010) The Bcl-2 homology domain 3 mimetic ABT-737 targets the apoptotic machinery in acute lymphoblastic leukemia resulting in synergistic in vitro and in vivo interactions with established drugs. Mol Pharmacol 77(3):483–494

    Article  CAS  PubMed  Google Scholar 

  10. Certo M et al (2006) Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9(5):351–365

    Article  CAS  PubMed  Google Scholar 

  11. Konopleva M et al (2006) Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 10(5):375–388

    Article  CAS  PubMed  Google Scholar 

  12. Jane EP et al (2013) YM-155 potentiates the effect of ABT-737 in malignant human glioma cells via survivin and Mcl-1 downregulation in an EGFR-dependent context. Mol Cancer Ther 12(3):326–338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Premkumar DR et al (2012) ABT-737 synergizes with bortezomib to induce apoptosis, mediated by Bid cleavage, Bax activation, and mitochondrial dysfunction in an Akt-dependent context in malignant human glioma cell lines. J Pharmacol Exp Ther 341(3):859–872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Tagscherer KE et al (2008) Apoptosis-based treatment of glioblastomas with ABT-737, a novel small molecule inhibitor of Bcl-2 family proteins. Oncogene 27(52):6646–6656

    Article  CAS  PubMed  Google Scholar 

  15. Jane EP et al (2014) Inhibition of Phosphatidylinositol 3-Kinase/AKT Signaling by NVP-BKM120 Promotes ABT-737-induced toxicity in a caspase-dependent manner through mitochondrial dysfunction and DNA damage response in established and primary cultured glioblastoma cells. J Pharmacol Exp Ther 350(1):22–35

    Article  CAS  PubMed  Google Scholar 

  16. Voss V et al (2010) The pan-Bcl-2 inhibitor (-)-gossypol triggers autophagic cell death in malignant glioma. Mol Cancer Res 8(7):1002–1016

    Article  CAS  PubMed  Google Scholar 

  17. Cristofanon S et al (2012) ABT-737 promotes tBid mitochondrial accumulation to enhance TRAIL-induced apoptosis in glioblastoma cells. Cell Death Dis 3:e432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358(11):1148–1159

    Article  CAS  PubMed  Google Scholar 

  19. Minucci S et al (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6(1):38–51

    Article  CAS  PubMed  Google Scholar 

  20. Carew JS et al (2008) Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy. Cancer Lett 269(1):7–17

    Article  CAS  PubMed  Google Scholar 

  21. Frew AJ et al (2009) Enhancing the apoptotic and therapeutic effects of HDAC inhibitors. Cancer Lett 280(2):125–133

    Article  CAS  PubMed  Google Scholar 

  22. Finnin MS et al (1999) Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401(6749):188–193

    Article  CAS  PubMed  Google Scholar 

  23. Premkumar DR et al (2013) Bortezomib-induced sensitization of malignant human glioma cells to vorinostat-induced apoptosis depends on reactive oxygen species production, mitochondrial dysfunction, Noxa upregulation, Mcl-1 cleavage, and DNA damage. Mol Carcinog 52(2):118–133

    Article  PubMed Central  PubMed  Google Scholar 

  24. Jane EP et al (2009) Abrogation of mitogen-activated protein kinase and Akt signaling by vandetanib synergistically potentiates histone deacetylase inhibitor-induced apoptosis in human glioma cells. J Pharmacol Exp Ther 331(1):327–337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Yin D et al (2007) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor: effects on gene expression and growth of glioma cells in vitro and in vivo. Clin Cancer Res 13(3):1045–1052

    Article  CAS  PubMed  Google Scholar 

  26. Lee EQ et al (2012) Phase I study of vorinostat in combination with temozolomide in patients with high-grade gliomas: north American Brain Tumor Consortium Study 04-03. Clin Cancer Res 18(21):6032–6039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Chinnaiyan P et al (2012) Phase I trial of vorinostat combined with bevacizumab and CPT-11 in recurrent glioblastoma. Neuro Oncol 14(1):93–100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Galanis E et al (2009) Phase II trial of vorinostat in recurrent glioblastoma multiforme: a north central cancer treatment group study. J Clin Oncol 27(12):2052–2058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Friday BB et al (2012) Phase II trial of vorinostat in combination with bortezomib in recurrent glioblastoma: a north central cancer treatment group study. Neuro Oncol 14(2):215–221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Whitecross KF et al (2009) Defining the target specificity of ABT-737 and synergistic antitumor activities in combination with histone deacetylase inhibitors. Blood 113(9):1982–1991

    Article  CAS  PubMed  Google Scholar 

  31. Xargay-Torrent S et al (2011) Vorinostat-induced apoptosis in mantle cell lymphoma is mediated by acetylation of proapoptotic BH3-only gene promoters. Clin Cancer Res 17(12):3956–3968

    Article  CAS  PubMed  Google Scholar 

  32. Wiegmans AP et al (2011) Deciphering the molecular events necessary for synergistic tumor cell apoptosis mediated by the histone deacetylase inhibitor vorinostat and the BH3 mimetic ABT-737. Cancer Res 71(10):3603–3615

    Article  CAS  PubMed  Google Scholar 

  33. Chen S et al (2009) Bim upregulation by histone deacetylase inhibitors mediates interactions with the Bcl-2 antagonist ABT-737: evidence for distinct roles for Bcl-2, Bcl-xL, and Mcl-1. Mol Cell Biol 29(23):6149–6169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Russo M et al (2013) ABT-737 resistance in B-cells isolated from chronic lymphocytic leukemia patients and leukemia cell lines is overcome by the pleiotropic kinase inhibitor quercetin through Mcl-1 down-regulation. Biochem Pharmacol 85(7):927–936

    Article  CAS  PubMed  Google Scholar 

  35. Spender LC et al (2012) Phosphoinositide 3-kinase/AKT/mTORC1/2 signaling determines sensitivity of Burkitt’s lymphoma cells to BH3 mimetics. Mol Cancer Res 10(3):347–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Inoue S et al (2007) Apoptosis induced by histone deacetylase inhibitors in leukemic cells is mediated by Bim and Noxa. Leukemia 21(8):1773–1782

    Article  CAS  PubMed  Google Scholar 

  37. Li J et al (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275(5308):1943–1947

    Article  CAS  PubMed  Google Scholar 

  38. Premkumar DR et al (2013) Survivin inhibitor YM-155 sensitizes tumor necrosis factor- related apoptosis-inducing ligand-resistant glioma cells to apoptosis through Mcl-1 downregulation and by engaging the mitochondrial death pathway. J Pharmacol Exp Ther 346(2):201–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Nencioni A et al (2005) Cooperative cytotoxicity of proteasome inhibitors and tumor necrosis factor-related apoptosis-inducing ligand in chemoresistant Bcl-2-overexpressing cells. Clin Cancer Res 11(11):4259–4265

    Article  CAS  PubMed  Google Scholar 

  40. Tait SW et al (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11(9):621–632

    Article  CAS  PubMed  Google Scholar 

  41. van Delft MF et al (2006) The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10(5):389–399

    Article  PubMed Central  PubMed  Google Scholar 

  42. Wei MC et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292(5517):727–730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Korsmeyer SJ et al (2000) Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7(12):1166–1173

    Article  CAS  PubMed  Google Scholar 

  44. Parsons DW et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Vogler M et al (2008) A novel paradigm for rapid ABT-737-induced apoptosis involving outer mitochondrial membrane rupture in primary leukemia and lymphoma cells. Cell Death Differ 15(5):820–830

    Article  CAS  PubMed  Google Scholar 

  46. Bolden JE et al (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5(9):769–784

    Article  CAS  PubMed  Google Scholar 

  47. Chen L et al (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17(3):393–403

    Article  CAS  PubMed  Google Scholar 

  48. Willis SN et al (2007) Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315(5813):856–859

    Article  CAS  PubMed  Google Scholar 

  49. Lovell JF et al (2008) Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell 135(6):1074–1084

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health Grant P01NS40923 (I.F.P), by the Walter L. Copeland of The Pittsburgh Foundation (K.A.F., D.R.P), and a grant from the Ian’s Friends Foundation (to I.F.P.) in honor of Ian Yagoda.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly A. Foster.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Supplementary material 2 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foster, K.A., Jane, E.P., Premkumar, D.R. et al. Co-administration of ABT-737 and SAHA induces apoptosis, mediated by Noxa upregulation, Bax activation and mitochondrial dysfunction in PTEN-intact malignant human glioma cell lines. J Neurooncol 120, 459–472 (2014). https://doi.org/10.1007/s11060-014-1575-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1575-2

Keywords

Navigation