Skip to main content

Advertisement

Log in

Neurosurgical oncology: advances in operative technologies and adjuncts

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Modern glioma surgery has evolved around the central tenet of safely maximizing resection. Recent surgical adjuncts have focused on increasing the maximum extent of resection while minimizing risk to functional brain. Technologies such as cortical and subcortical stimulation mapping, intraoperative magnetic resonance imaging, functional neuronavigation, navigable intraoperative ultrasound, neuroendoscopy, and fluorescence-guided resection have been developed to augment the identification of tumor while preserving brain anatomy and function. However, whether these technologies offer additional long-term benefits to glioma patients remains to be determined. Here we review advances over the past decade in operative technologies that have offered the most promising benefits for glioblastoma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vuorinen V et al (2003) Debulking or biopsy of malignant glioma in elderly people—a randomised study. Acta Neurochir (Wien) 145(1):5–10

    CAS  Google Scholar 

  2. Stummer W et al (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7(5):392–401

    PubMed  CAS  Google Scholar 

  3. Stummer W et al (2012) Prospective cohort study of radiotherapy with concomitant and adjuvant temozolomide chemotherapy for glioblastoma patients with no or minimal residual enhancing tumor load after surgery. J Neurooncol 108(1):89–97

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Keles GE, Anderson B, Berger MS (1999) The effect of extent of resection on time to tumor progression and survival in patients with glioblastoma multiforme of the cerebral hemisphere. Surg Neurol 52(4):371–379

    PubMed  CAS  Google Scholar 

  5. Lacroix M et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95(2):190–198

    PubMed  CAS  Google Scholar 

  6. Sanai N et al (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115(1):3–8

    PubMed  Google Scholar 

  7. Pope WB et al (2005) MR imaging correlates of survival in patients with high-grade gliomas. AJNR Am J Neuroradiol 26(10):2466–2474

    PubMed  Google Scholar 

  8. Metcalfe SE (2000) Biopsy versus resection for malignant glioma. Cochrane Database Syst Rev (2):CD002034

  9. Sanai N, Berger MS (2008) Glioma extent of resection and its impact on patient outcome. Neurosurgery 62(4):753–764; discussion 264–266

  10. Duffau H et al (2003) Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patients. J Neurosurg 98(4):764–778

    PubMed  Google Scholar 

  11. Berger MS, Ojemann GA (1992) Intraoperative brain mapping techniques in neuro-oncology. Stereotact Funct Neurosurg 58(1–4):153–161

    PubMed  CAS  Google Scholar 

  12. Danks RA et al (2000) Craniotomy under local anesthesia and monitored conscious sedation for the resection of tumors involving eloquent cortex. J Neurooncol 49(2):131–139

    PubMed  CAS  Google Scholar 

  13. Grundy BL (1983) Intraoperative monitoring of sensory-evoked potentials. Anesthesiology 58(1):72–87

    PubMed  CAS  Google Scholar 

  14. Allen A, Starr A, Nudleman K (1981) Assessment of sensory function in the operating room utilizing cerebral evoked potentials: a study of fifty-six surgically anesthetized patients. Clin Neurosurg 28:457–481

    PubMed  CAS  Google Scholar 

  15. De Witt Hamer PC et al (2012) Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol 30(20):2559–2565

    PubMed  Google Scholar 

  16. Duffau H (2009) A personal consecutive series of surgically treated 51 cases of insular WHO Grade II glioma: advances and limitations. J Neurosurg 110(4):696–708

    PubMed  Google Scholar 

  17. Duffau H et al (2008) Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with Grade II glioma in the left dominant hemisphere. J Neurosurg 109(3):461–471

    PubMed  Google Scholar 

  18. Eisner W et al (2002) Use of neuronavigation and electrophysiology in surgery of subcortically located lesions in the sensorimotor strip. J Neurol Neurosurg Psychiatry 72(3):378–381

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Keles GE et al (2004) Intraoperative subcortical stimulation mapping for hemispherical perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients. J Neurosurg 100(3):369–375

    PubMed  Google Scholar 

  20. Sanai N, Mirzadeh Z, Berger MS (2008) Functional outcome after language mapping for glioma resection. N Engl J Med 358(1):18–27

    PubMed  CAS  Google Scholar 

  21. Sanai N (2012) Emerging operative strategies in neurosurgical oncology. Curr Opin Neurol 25(6):756–766

    PubMed  Google Scholar 

  22. Golfinos JG et al (1995) Clinical use of a frameless stereotactic arm: results of 325 cases. J Neurosurg 83(2):197–205

    PubMed  CAS  Google Scholar 

  23. Gumprecht HK, Widenka DC, Lumenta CB (1999) BrainLab VectorVision neuronavigation system: technology and clinical experiences in 131 cases. Neurosurgery 44(1):97–104; discussion 104–105

  24. Kurimoto M et al (2004) Impact of neuronavigation and image-guided extensive resection for adult patients with supratentorial malignant astrocytomas: a single-institution retrospective study. Minim Invasive Neurosurg 47(5):278–283

    PubMed  CAS  Google Scholar 

  25. Roberts DW et al (1986) A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg 65(4):545–549

    PubMed  CAS  Google Scholar 

  26. Willems PW et al (2006) Effectiveness of neuronavigation in resecting solitary intracerebral contrast-enhancing tumors: a randomized controlled trial. J Neurosurg 104(3):360–368

    PubMed  Google Scholar 

  27. Bizzi A et al (2008) Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology 248(2):579–589

    PubMed  Google Scholar 

  28. Krishnan R et al (2004) Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome. Neurosurgery 55(4):904–914; discusssion 914–915

  29. Wu JS et al (2007) Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery 61(5):935–948; discussion 948–949

  30. Gonzalez-Darder JM et al (2010) Multimodal navigation in the functional microsurgical resection of intrinsic brain tumors located in eloquent motor areas: role of tractography. Neurosurg Focus 28(2):E5

    PubMed  Google Scholar 

  31. Schulder M et al (1998) Functional image-guided surgery of intracranial tumors located in or near the sensorimotor cortex. J Neurosurg 89(3):412–418

    PubMed  CAS  Google Scholar 

  32. McDonald JD et al (1999) Integration of preoperative and intraoperative functional brain mapping in a frameless stereotactic environment for lesions near eloquent cortex. Technical note. J Neurosurg 90(3):591–598

    PubMed  CAS  Google Scholar 

  33. Coenen VA et al (2001) Three-dimensional visualization of the pyramidal tract in a neuronavigation system during brain tumor surgery: first experiences and technical note. Neurosurgery 49(1):86–92; discussion 92–93

  34. Kumar A et al (2014) The role of neuronavigation-guided functional MRI and diffusion tensor tractography along with cortical stimulation in patients with eloquent cortex lesions. Br J Neurosurg 28(2):226–233

    PubMed  Google Scholar 

  35. Schonberg T et al (2006) Characterization of displaced white matter by brain tumors using combined DTI and fMRI. Neuroimage 30(4):1100–1111

    PubMed  Google Scholar 

  36. Berntsen EM et al (2010) Functional magnetic resonance imaging and diffusion tensor tractography incorporated into an intraoperative 3-dimensional ultrasound-based neuronavigation system: impact on therapeutic strategies, extent of resection, and clinical outcome. Neurosurgery 67(2):251–264

    PubMed  Google Scholar 

  37. Romano A et al (2009) Pre-surgical planning and MR-tractography utility in brain tumour resection. Eur Radiol 19(12):2798–2808

    PubMed  CAS  Google Scholar 

  38. Romano A et al (2007) Role of magnetic resonance tractography in the preoperative planning and intraoperative assessment of patients with intra-axial brain tumours. Radiol Med 112(6):906–920

    PubMed  CAS  Google Scholar 

  39. Yu CS et al (2005) Diffusion tensor tractography in patients with cerebral tumors: a helpful technique for neurosurgical planning and postoperative assessment. Eur J Radiol 56(2):197–204

    PubMed  Google Scholar 

  40. Bello L et al (2010) Intraoperative use of diffusion tensor imaging fiber tractography and subcortical mapping for resection of gliomas: technical considerations. Neurosurg Focus 28(2):E6

    PubMed  Google Scholar 

  41. Mikuni N et al (2007) Clinical impact of integrated functional neuronavigation and subcortical electrical stimulation to preserve motor function during resection of brain tumors. J Neurosurg 106(4):593–598

    PubMed  Google Scholar 

  42. Bello L et al (2008) Motor and language DTI Fiber Tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. Neuroimage 39(1):369–382

    PubMed  Google Scholar 

  43. De Nigris D, Collins DL, Arbel T (2013) Fast rigid registration of pre-operative magnetic resonance images to intra-operative ultrasound for neurosurgery based on high confidence gradient orientations. Int J Comput Assist Radiol Surg 8(4):649–661

    PubMed  Google Scholar 

  44. Black PM et al (1997) Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery 41(4):831–842; discussion 842–845

  45. Bohinski RJ et al (2001) Intraoperative magnetic resonance imaging to determine the extent of resection of pituitary macroadenomas during transsphenoidal microsurgery. Neurosurgery 49(5):1133–1143; discussion 1143–1144

  46. Claus EB et al (2005) Survival rates in patients with low-grade glioma after intraoperative magnetic resonance image guidance. Cancer 103(6):1227–1233

    PubMed  Google Scholar 

  47. Gerlach R et al (2008) Feasibility of Polestar N20, an ultra-low-field intraoperative magnetic resonance imaging system in resection control of pituitary macroadenomas: lessons learned from the first 40 cases. Neurosurgery 63(2):272–284; discussion 284–285

  48. Nimsky C et al (2004) Volumetric assessment of glioma removal by intraoperative high-field magnetic resonance imaging. Neurosurgery 55(2):358–370; discussion 370–371

  49. Nimsky C et al (2006) Intraoperative high-field magnetic resonance imaging in transsphenoidal surgery of hormonally inactive pituitary macroadenomas. Neurosurgery 59(1):105–114; discussion 105–114

  50. Schwartz TH, Stieg PE, Anand VK (2006) Endoscopic transsphenoidal pituitary surgery with intraoperative magnetic resonance imaging. Neurosurgery 58(1 Suppl):ONS44–ONS51; discussion ONS44–ONS51

  51. Schneider JP et al (2005) Intraoperative MRI to guide the resection of primary supratentorial glioblastoma multiforme—a quantitative radiological analysis. Neuroradiology 47(7):489–500

    PubMed  Google Scholar 

  52. Senft C et al (2011) Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol 12(11):997–1003

    PubMed  Google Scholar 

  53. Kuhnt D et al (2011) Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high-field intraoperative MRI guidance. Neuro Oncol 13(12):1339–1348

    PubMed  PubMed Central  Google Scholar 

  54. Hatiboglu MA et al (2009) Impact of intraoperative high-field magnetic resonance imaging guidance on glioma surgery: a prospective volumetric analysis. Neurosurgery 64(6):1073–1081; discussion 1081

  55. Senft C et al (2008) Usefulness of intraoperative ultra low-field magnetic resonance imaging in glioma surgery. Neurosurgery 63(4 Suppl 2):257–266; discussion 266–267

  56. Nimsky C et al (2004) Intraoperative high-field-strength MR imaging: implementation and experience in 200 patients. Radiology 233(1):67–78

    PubMed  Google Scholar 

  57. Nimsky C et al (2003) Preliminary experience in glioma surgery with intraoperative high-field MRI. Acta Neurochir Suppl 88:21–29

    PubMed  CAS  Google Scholar 

  58. Schulder M, Carmel PW (2003) Intraoperative magnetic resonance imaging: impact on brain tumor surgery. Cancer Control 10(2):115–124

    PubMed  Google Scholar 

  59. Senft C et al (2010) Low field intraoperative MRI-guided surgery of gliomas: a single center experience. Clin Neurol Neurosurg 112(3):237–243

    PubMed  Google Scholar 

  60. Wirtz CR et al (2000) Clinical evaluation and follow-up results for intraoperative magnetic resonance imaging in neurosurgery. Neurosurgery 46(5):1112–1120; discussion 1120–1122

  61. Kubben PL et al (2011) Intraoperative MRI-guided resection of glioblastoma multiforme: a systematic review. Lancet Oncol 12(11):1062–1070

    PubMed  Google Scholar 

  62. Foroglou N, Zamani A, Black P (2009) Intra-operative MRI (iop-MR) for brain tumour surgery. Br J Neurosurg 23(1):14–22

    PubMed  Google Scholar 

  63. Hirschberg H et al (2005) Impact of intraoperative MRI on the surgical results for high-grade gliomas. Minim Invasive Neurosurg 48(2):77–84

    PubMed  CAS  Google Scholar 

  64. Hall WA, Truwit CL (2008) Intraoperative MR-guided neurosurgery. J Magn Reson Imaging 27(2):368–375

    PubMed  Google Scholar 

  65. Knauth M et al (1999) Surgically induced intracranial contrast enhancement: potential source of diagnostic error in intraoperative MR imaging. AJNR Am J Neuroradiol 20(8):1547–1553

    PubMed  CAS  Google Scholar 

  66. Ozduman K et al (2014) Using intraoperative dynamic contrast-enhanced T1-weighted MRI to identify residual tumor in glioblastoma surgery. J Neurosurg 120(1):60–66

    PubMed  Google Scholar 

  67. Moiyadi A, Shetty P (2011) Objective assessment of utility of intraoperative ultrasound in resection of central nervous system tumors: a cost-effective tool for intraoperative navigation in neurosurgery. J Neurosci Rural Pract 2(1):4–11

    PubMed  PubMed Central  Google Scholar 

  68. Unsgaard G et al (2002) Brain operations guided by real-time two-dimensional ultrasound: new possibilities as a result of improved image quality. Neurosurgery 51(2):402–411; discussion 411–412

  69. Dohrmann GJ, Rubin JM (2001) History of intraoperative ultrasound in neurosurgery. Neurosurg Clin N Am 12(1):155–166, ix

  70. Moiyadi AV et al (2013) Usefulness of three-dimensional navigable intraoperative ultrasound in resection of brain tumors with a special emphasis on malignant gliomas. Acta Neurochir (Wien) 155(12):2217–2225

    Google Scholar 

  71. Solheim O et al (2010) Ultrasound-guided operations in unselected high-grade gliomas—overall results, impact of image quality and patient selection. Acta Neurochir (Wien) 152(11):1873–1886

    Google Scholar 

  72. Unsgaard G et al (2005) Ability of navigated 3D ultrasound to delineate gliomas and metastases—comparison of image interpretations with histopathology. Acta Neurochir (Wien) 147(12):1259–1269; discussion 1269

  73. Bonsanto MM et al (2005) 3D ultrasound navigation in syrinx surgery—a feasibility study. Acta Neurochir (Wien) 147(5):533–540; discussion 540–541

  74. Kolstad F et al (2006) Three-dimensional ultrasonography navigation in spinal cord tumor surgery. Technical note. J Neurosurg Spine 5(3):264–270

    PubMed  Google Scholar 

  75. Glasker S et al (2011) Doppler-sonographically guided resection of central nervous system hemangioblastomas. Neurosurgery 68(2 Suppl Operative):267–275; discussion 274–275

  76. Jakola AS et al (2012) The influence of surgery on quality of life in patients with intracranial meningiomas: a prospective study. J Neurooncol 110(1):137–144

    PubMed  Google Scholar 

  77. Engelhardt M et al (2007) Feasibility of contrast-enhanced sonography during resection of cerebral tumours: initial results of a prospective study. Ultrasound Med Biol 33(4):571–575

    PubMed  Google Scholar 

  78. He W et al (2008) Intraoperative contrast-enhanced ultrasound for brain tumors. Clin Imaging 32(6):419–424

    PubMed  Google Scholar 

  79. Saether CA et al (2012) Did survival improve after the implementation of intraoperative neuronavigation and 3D ultrasound in glioblastoma surgery? A retrospective analysis of 192 primary operations. J Neurol Surg A Cent Eur Neurosurg 73(2):73–78

    PubMed  CAS  Google Scholar 

  80. Unsgaard G et al (2006) Intra-operative 3D ultrasound in neurosurgery. Acta Neurochir (Wien) 148(3):235–253; discussion 253

  81. Rohde V, Coenen VA (2011) Intraoperative 3-dimensional ultrasound for resection control during brain tumour removal: preliminary results of a prospective randomized study. Acta Neurochir Suppl 109:187–190

    PubMed  Google Scholar 

  82. Roth J et al (2007) Real-time neuronavigation with high-quality 3D ultrasound SonoWand in pediatric neurosurgery. Pediatr Neurosurg 43(3):185–191

    PubMed  Google Scholar 

  83. Steno A et al (2012) Navigated three-dimensional intraoperative ultrasound-guided awake resection of low-grade glioma partially infiltrating optic radiation. Acta Neurochir (Wien) 154(7):1255–1262

    Google Scholar 

  84. Diez Valle R et al (2011) Surgery guided by 5-aminolevulinic fluorescence in glioblastoma: volumetric analysis of extent of resection in single-center experience. J Neurooncol 102(1):105–113

    PubMed  CAS  Google Scholar 

  85. Rygh OM et al (2008) Comparison of navigated 3D ultrasound findings with histopathology in subsequent phases of glioblastoma resection. Acta Neurochir (Wien) 150(10):1033–1041; discussion 1042

  86. Selbekk T et al (2013) Ultrasound imaging in neurosurgery: approaches to minimize surgically induced image artefacts for improved resection control. Acta Neurochir (Wien) 155(6):973–980

    Google Scholar 

  87. Coenen VA et al (2005) Sequential visualization of brain and fiber tract deformation during intracranial surgery with three-dimensional ultrasound: an approach to evaluate the effect of brain shift. Neurosurgery 56(1 Suppl):133–141; discussion 133–141

  88. Albert FK et al (1994) Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 34(1):45–60; discussion 60–61

  89. Berger MS (1994) Malignant astrocytomas: surgical aspects. Semin Oncol 21(2):172–185

    PubMed  CAS  Google Scholar 

  90. Ritz R et al (2012) Hypericin for visualization of high grade gliomas: first clinical experience. Eur J Surg Oncol 38(4):352–360

    PubMed  CAS  Google Scholar 

  91. Valdes PA et al (2011) Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker. J Neurosurg 115(1):11–17

    PubMed  PubMed Central  Google Scholar 

  92. Della Puppa A et al (2013) 5-aminolevulinic acid (5-ALA) fluorescence guided surgery of high-grade gliomas in eloquent areas assisted by functional mapping. Our experience and review of the literature. Acta Neurochir (Wien) 155(6):965–972; discussion 972

  93. Schucht P et al (2012) Gross total resection rates in contemporary glioblastoma surgery: results of an institutional protocol combining 5-aminolevulinic acid intraoperative fluorescence imaging and brain mapping. Neurosurgery 71(5):927–935; discussion 935–936

  94. Sanai N et al (2011) Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low-grade gliomas. J Neurosurg 115(4):740–748

    PubMed  CAS  Google Scholar 

  95. Sanai N et al (2011) Intraoperative confocal microscopy for brain tumors: a feasibility analysis in humans. Neurosurgery 68(2 Suppl Operative):282–290; discussion 290

  96. Schucht P et al (2014) 5-ALA complete resections go beyond MR contrast enhancement: shift corrected volumetric analysis of the extent of resection in surgery for glioblastoma. Acta Neurochir (Wien) 156(2):305–312; discussion 312

  97. Aldave G et al (2013) Prognostic value of residual fluorescent tissue in glioblastoma patients after gross total resection in 5-aminolevulinic Acid-guided surgery. Neurosurgery 72(6):915–920; discussion 920–921

  98. Roessler K et al (2012) Intraoperative tissue fluorescence using 5-aminolevolinic acid (5-ALA) is more sensitive than contrast MRI or amino acid positron emission tomography ((18)F-FET PET) in glioblastoma surgery. Neurol Res 34(3):314–317

    PubMed  CAS  Google Scholar 

  99. Li Y et al (2013) Intraoperative fluorescence-guided resection of high-grade gliomas: a comparison of the present techniques and evolution of future strategies. World Neurosurg. doi:10.1016/j.wneu.2013.06.014

  100. Roberts DW et al (2011) Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between delta-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article. J Neurosurg 114(3):595–603

    PubMed  PubMed Central  Google Scholar 

  101. Miyatake S et al (2007) Fluorescence of non-neoplastic, magnetic resonance imaging-enhancing tissue by 5-aminolevulinic acid: case report. Neurosurgery 61(5):E1101–E1103; discussion E1103–E1104

  102. Grossman R et al (2014) Intraoperative 5-aminolevulinic acid-induced fluorescence in primary central nervous system lymphoma. J Neurosurg 120(1):67–69

    PubMed  Google Scholar 

  103. Hefti M et al (2008) 5-Aminolevulinic acid induced protoporphyrin IX fluorescence in high-grade glioma surgery: a one-year experience at a single institutuion. Swiss Med Wkly 138(11–12):180–185

    PubMed  CAS  Google Scholar 

  104. Stummer W et al (1998) Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery 42(3):518–525; discussion 525–526

  105. Stummer W et al (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93(6):1003–1013

    PubMed  CAS  Google Scholar 

  106. Shinoda J et al (2003) Fluorescence-guided resection of glioblastoma multiforme by using high-dose fluorescein sodium. Technical note. J Neurosurg 99(3):597–603

    PubMed  Google Scholar 

  107. Koc K et al (2008) Fluorescein sodium-guided surgery in glioblastoma multiforme: a prospective evaluation. Br J Neurosurg 22(1):99–103

    PubMed  CAS  Google Scholar 

  108. Acerbi F et al (2014) Is fluorescein-guided technique able to help in resection of high-grade gliomas? Neurosurg Focus 36(2):E5

    PubMed  Google Scholar 

  109. Cappabianca P et al (2002) Surgical complications associated with the endoscopic endonasal transsphenoidal approach for pituitary adenomas. J Neurosurg 97(2):293–298

    PubMed  Google Scholar 

  110. Cappabianca P, Cavallo LM, de Divitiis E (2004) Endoscopic endonasal transsphenoidal surgery. Neurosurgery 55(4):933–940; discussion 940–941

  111. Jho HD et al (1997) Endoscopic pituitary surgery: an early experience. Surg Neurol 47(3):213–222; discussion 222–223

  112. Frank G et al (2006) The endoscopic versus the traditional approach in pituitary surgery. Neuroendocrinology 83(3–4):240–248

    PubMed  CAS  Google Scholar 

  113. Laufer I, Anand VK, Schwartz TH (2007) Endoscopic, endonasal extended transsphenoidal, transplanum transtuberculum approach for resection of suprasellar lesions. J Neurosurg 106(3):400–406

    PubMed  Google Scholar 

  114. Paluzzi A et al (2013) Endoscopic endonasal approach for pituitary adenomas: a series of 555 patients. Pituitary. doi:10.1007/s11102-013-0502-4

  115. Powell M (2009) Microscope and endoscopic pituitary surgery. Acta Neurochir (Wien) 151(7):723–728

    Google Scholar 

  116. Morgenstern PF, Souweidane MM (2013) Pineal region tumors: simultaneous endoscopic third ventriculostomy and tumor biopsy. World Neurosurg 79(2 Suppl):S18-e9–S18-e13

    Google Scholar 

  117. Al-Tamimi YZ et al (2008) Endoscopic biopsy during third ventriculostomy in paediatric pineal region tumours. Childs Nerv Syst 24(11):1323–1326

    PubMed  Google Scholar 

  118. O’Brien DF et al (2006) Outcomes in patients undergoing single-trajectory endoscopic third ventriculostomy and endoscopic biopsy for midline tumors presenting with obstructive hydrocephalus. J Neurosurg 105(3 Suppl):219–226

    PubMed  Google Scholar 

  119. Yamini B et al (2004) Initial endoscopic management of pineal region tumors and associated hydrocephalus: clinical series and literature review. J Neurosurg 100(5 Suppl Pediatrics):437–441

    PubMed  Google Scholar 

  120. Rohde V et al (2012) The role of neuronavigation in intracranial endoscopic procedures. Neurosurg Rev 35(3):351–358

    PubMed  PubMed Central  Google Scholar 

  121. Pople IK et al (2001) The role of endoscopic biopsy and third ventriculostomy in the management of pineal region tumours. Br J Neurosurg 15(4):305–311

    PubMed  CAS  Google Scholar 

  122. Robinson S, Cohen AR (1997) The role of neuroendoscopy in the treatment of pineal region tumors. Surg Neurol 48(4):360–365; discussion 365–367

  123. Kim IY et al (2004) Neuronavigation-guided endoscopic surgery for pineal tumors with hydrocephalus. Minim Invasive Neurosurg 47(6):365–368

    PubMed  CAS  Google Scholar 

  124. Schroeder HW et al (2001) Frameless neuronavigation in intracranial endoscopic neurosurgery. J Neurosurg 94(1):72–79

    PubMed  CAS  Google Scholar 

  125. Chernov MF et al (2006) Neurofiberscopic biopsy of tumors of the pineal region and posterior third ventricle: indications, technique, complications, and results. Neurosurgery 59(2):267–277; discussion 267–277

  126. Gangemi M et al (2001) Endoscopic surgery for pineal region tumors. Minim Invasive Neurosurg 44(2):70–73

    PubMed  CAS  Google Scholar 

  127. Barkhoudarian G, Romero ADCB, Laws ER (2013) Evaluation of the 3-dimensional endoscope in transsphenoidal surgery. Neurosurgery 73(1 Suppl Operative):ons74–ons78; discussion ons78–ons79

  128. Tabaee A et al (2009) Three-dimensional endoscopic pituitary surgery. Neurosurgery 64(5 Suppl 2):288–293; discussion 294–295

  129. Kari E et al (2012) Comparison of traditional 2-dimensional endoscopic pituitary surgery with new 3-dimensional endoscopic technology: intraoperative and early postoperative factors. Int Forum Allergy Rhinol 2(1):2–8

    PubMed  Google Scholar 

  130. Brem H et al (1995) Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain Tumor Treatment Group. Lancet 345(8956):1008–1012

    PubMed  CAS  Google Scholar 

  131. Westphal M et al (2003) A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol 5(2):79–88

    PubMed  CAS  PubMed Central  Google Scholar 

  132. Attenello FJ et al (2008) Use of Gliadel (BCNU) wafer in the surgical treatment of malignant glioma: a 10-year institutional experience. Ann Surg Oncol 15(10):2887–2893

    PubMed  Google Scholar 

  133. Westphal M et al (2006) Gliadel wafer in initial surgery for malignant glioma: long-term follow-up of a multicenter controlled trial. Acta Neurochir (Wien) 148(3):269–275; discussion 275

  134. Valtonen S et al (1997) Interstitial chemotherapy with carmustine-loaded polymers for high-grade gliomas: a randomized double-blind study. Neurosurgery 41(1):44–48; discussion 48–49

  135. Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    PubMed  CAS  Google Scholar 

  136. Bock HC et al (2010) First-line treatment of malignant glioma with carmustine implants followed by concomitant radiochemotherapy: a multicenter experience. Neurosurg Rev 33(4):441–449

    PubMed  PubMed Central  Google Scholar 

  137. McGirt MJ et al (2009) Gliadel (BCNU) wafer plus concomitant temozolomide therapy after primary resection of glioblastoma multiforme. J Neurosurg 110(3):583–588

    PubMed  CAS  Google Scholar 

  138. Menei P et al (2010) Biodegradable carmustine wafers (Gliadel) alone or in combination with chemoradiotherapy: the French experience. Ann Surg Oncol 17(7):1740–1746

    PubMed  Google Scholar 

  139. Pan E, Mitchell SB, Tsai JS (2008) A retrospective study of the safety of BCNU wafers with concurrent temozolomide and radiotherapy and adjuvant temozolomide for newly diagnosed glioblastoma patients. J Neurooncol 88(3):353–357

    PubMed  Google Scholar 

  140. Affronti ML et al (2009) Overall survival of newly diagnosed glioblastoma patients receiving carmustine wafers followed by radiation and concurrent temozolomide plus rotational multiagent chemotherapy. Cancer 115(15):3501–3511

    PubMed  CAS  Google Scholar 

  141. Engelhard HH (2000) Tumor bed cyst formation after BCNU wafer implantation: report of two cases. Surg Neurol 53(3):220–224

    PubMed  CAS  Google Scholar 

  142. McGirt MJ et al (2002) Management of tumor bed cysts after chemotherapeutic wafer implantation. Report of four cases. J Neurosurg 96(5):941–945

    PubMed  Google Scholar 

  143. Subach BR et al (1999) Morbidity and survival after 1,3-bis(2-chloroethyl)-1-nitrosourea wafer implantation for recurrent glioblastoma: a retrospective case-matched cohort series. Neurosurgery 45(1):17–22; discussion 22–23

  144. Weber EL, Goebel EA (2005) Cerebral edema associated with Gliadel wafers: two case studies. Neuro Oncol 7(1):84–89

    PubMed  PubMed Central  Google Scholar 

  145. Bregy A et al (2013) The role of Gliadel wafers in the treatment of high-grade gliomas. Expert Rev Anticancer Ther 13(12):1453–1461

    PubMed  CAS  Google Scholar 

  146. Bobo RH et al (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 91(6):2076–2080

    PubMed  CAS  PubMed Central  Google Scholar 

  147. Juratli TA, Schackert G, Krex D (2013) Current status of local therapy in malignant gliomas—a clinical review of three selected approaches. Pharmacol Ther 139(3):341–358

    PubMed  CAS  Google Scholar 

  148. Bruce JN et al (2011) Regression of recurrent malignant gliomas with convection-enhanced delivery of topotecan. Neurosurgery 69(6):1272–1279; discussion 1279–1280

  149. Lidar Z et al (2004) Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a phase I/II clinical study. J Neurosurg 100(3):472–479

    PubMed  CAS  Google Scholar 

  150. Bogdahn U et al (2011) Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro Oncol 13(1):132–142

    PubMed  CAS  PubMed Central  Google Scholar 

  151. Carpentier A et al (2010) Intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma: a phase II study. Neuro Oncol 12(4):401–408

    PubMed  CAS  PubMed Central  Google Scholar 

  152. Sampson JH et al (2008) Intracerebral infusion of an EGFR-targeted toxin in recurrent malignant brain tumors. Neuro Oncol 10(3):320–329

    PubMed  CAS  PubMed Central  Google Scholar 

  153. Weber FW et al (2003) Local convection enhanced delivery of IL4-Pseudomonas exotoxin (NBI-3001) for treatment of patients with recurrent malignant glioma. Acta Neurochir Suppl 88:93–103

    PubMed  CAS  Google Scholar 

  154. Sampson JH et al (2003) Progress report of a phase I study of the intracerebral microinfusion of a recombinant chimeric protein composed of transforming growth factor (TGF)-alpha and a mutated form of the pseudomonas exotoxin termed PE-38 (TP-38) for the treatment of malignant brain tumors. J Neurooncol 65(1):27–35

    PubMed  Google Scholar 

  155. Kunwar S et al (2010) Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma. Neuro Oncol 12(8):871–881

    PubMed  CAS  PubMed Central  Google Scholar 

  156. Sampson JH et al (2010) Poor drug distribution as a possible explanation for the results of the PRECISE trial. J Neurosurg 113(2):301–309

    PubMed  Google Scholar 

  157. Mueller S et al (2011) Effect of imaging and catheter characteristics on clinical outcome for patients in the PRECISE study. J Neurooncol 101(2):267–277

    PubMed  PubMed Central  Google Scholar 

  158. Anderson RC et al (2013) Convection-enhanced delivery of topotecan into diffuse intrinsic brainstem tumors in children. J Neurosurg Pediatr 11(3):289–295

    PubMed  Google Scholar 

  159. Kunwar S et al (2006) Safety of intraparenchymal convection-enhanced delivery of cintredekin besudotox in early-phase studies. Neurosurg Focus 20(4):E15

    PubMed  Google Scholar 

  160. Parney IF et al (2005) Neuroradiographic changes following convection-enhanced delivery of the recombinant cytotoxin interleukin 13-PE38QQR for recurrent malignant glioma. J Neurosurg 102(2):267–275

    PubMed  CAS  Google Scholar 

  161. Vogelbaum MA et al (2007) Convection-enhanced delivery of cintredekin besudotox (interleukin-13-PE38QQR) followed by radiation therapy with and without temozolomide in newly diagnosed malignant gliomas: phase 1 study of final safety results. Neurosurgery 61(5):1031–1037; discussion 1037–1038

  162. Sampson JH et al (2007) Intracerebral infusate distribution by convection-enhanced delivery in humans with malignant gliomas: descriptive effects of target anatomy and catheter positioning. Neurosurgery 60(2 Suppl 1): ONS89–ONS98; discussion ONS98–ONS99

  163. Chen MY et al (1999) Variables affecting convection-enhanced delivery to the striatum: a systematic examination of rate of infusion, cannula size, infusate concentration, and tissue-cannula sealing time. J Neurosurg 90(2):315–320

    PubMed  CAS  Google Scholar 

  164. Saito R et al (2011) Regression of recurrent glioblastoma infiltrating the brainstem after convection-enhanced delivery of nimustine hydrochloride. J Neurosurg Pediatr 7(5):522–526

    PubMed  Google Scholar 

  165. Sampson JH et al (2011) Colocalization of gadolinium-diethylene triamine pentaacetic acid with high-molecular-weight molecules after intracerebral convection-enhanced delivery in humans. Neurosurgery 69(3):668–676

    PubMed  PubMed Central  Google Scholar 

  166. Lonser RR et al (2007) Real-time image-guided direct convective perfusion of intrinsic brainstem lesions. Technical note. J Neurosurg 107(1):190–197

    PubMed  Google Scholar 

  167. Chittiboina P et al (2014) Magnetic resonance imaging properties of convective delivery in diffuse intrinsic pontine gliomas. J Neurosurg Pediatr 13(3):276–282

    PubMed  Google Scholar 

Download references

Conflict of interest

The authors have no conflicts of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy S. D’Amico.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Amico, R.S., Kennedy, B.C. & Bruce, J.N. Neurosurgical oncology: advances in operative technologies and adjuncts. J Neurooncol 119, 451–463 (2014). https://doi.org/10.1007/s11060-014-1493-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1493-3

Keywords

Navigation