Skip to main content

Advertisement

Log in

New prospects for management and treatment of inoperable and recurrent skull base meningiomas

  • Invited Manuscript
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Skull base, including optic nerve, cavernous sinus, clival and foramen magnum tumors represent a major challenge for neurosurgeons and neuro-oncologists. Growth regulatory signaling pathways for these tumors are of increasing interest as potential targets for new chemotherapy. Those differentially activated in various grades of meningiomas are currently being identified as well. This article reviews some recent findings pathways that appear to regulate meningioma growth. Potential targets for novel therapies are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bondy M, Ligon BL (1996) Epidemiology and etiology of intracranial meningiomas: a review. J Neurooncol 29:197–205

    Article  PubMed  CAS  Google Scholar 

  2. Jaaskelainen J (1986) Seemingly complete removal of histologically benign intracranial meningioma: late recurrence rate and factors predicting recurrence in 637 patients. A multivariate analysis. Surg Neurol 26:461–469

    CAS  Google Scholar 

  3. Stafford SL, Perry A, Suman VJ et al (1998) Primarily resected meningiomas: outcomes and prognostic factors in 581 Mayo Clinic patients, 1978 through 1988. Mayo Clin Proc 73:936–942

    PubMed  CAS  Google Scholar 

  4. Perry A, Stafford SL, Scheithauer BW et al (1997) Meningioma grading: an analysis of histologic parameters. Am J Surg Pathol 21:1455–1465

    Article  PubMed  CAS  Google Scholar 

  5. Maroon JC, Kennerdell JS, Vidovich DV, Alba A, Sternau L (1994) Reccurent spheno-orbital meningioma. J Neurosurg 80:202–208

    PubMed  CAS  Google Scholar 

  6. Black PM, Villavicencio AT, Rhouddou C, Loeffler JS (2001) Aggressive surgery and focal radiation in the management of meningiomas of the skull base: Preservation of function with the maintenance of local control. Acta Neurochir 143:555–562

    Article  CAS  Google Scholar 

  7. Drummond KJ, Zhu J-J, Black PM (2004) Meningiomas: updating basic science, management, and outcome. The Neurologist 10:113–130

    Article  PubMed  Google Scholar 

  8. Kim Y-J, Ketter R, Henn W et al (2006) Histopathologic indicators of recurrence in meningiomas: correlation with clinical and genetic parameters. Virchows Arch 449:529–538

    Article  PubMed  CAS  Google Scholar 

  9. Manelfe C, Lasjaunias P, Ruscalleda J (1986) Preoperative embolization of intracranial meningiomas. Am J Neuroradiol 7:963–972

    PubMed  CAS  Google Scholar 

  10. Simpson D (1957) The recurrence of intracranial meningiomas after surgical treatment. J Neurol Neurosurg Psychiatry 20:22–39

    PubMed  CAS  Google Scholar 

  11. Dolenc V (1983) Direct microsurgical repair of intracavernous vascular lesions. J Neurosurg 58:824–831

    PubMed  CAS  Google Scholar 

  12. O’Sullivan MG, van Loveren HR, Tew JM Jr (1997) The surgical respectability of meningiomas of the cavernous sinus. Neurosurgery 40:238–237

    Article  PubMed  CAS  Google Scholar 

  13. Pamir MN, Kilic T, Bayrakli F, Peker S (2005) Changing strategy of cavernous sinus meningiomas: experience of a single institution. Surg Neurol 64(Suppl 2):S58–66

    Article  PubMed  Google Scholar 

  14. Maruyama K, Shin M, Kurita H, Hawahara N, Morita A, Kirino T (2004) Proposed treatment strategy for cavernous sinus meningiomas: prospective study. Neurosurgery 55: 1068–1075

    Article  PubMed  Google Scholar 

  15. Couldwell WT, Kan P, Liu JK, Apfelbaum RI (2006) Decompression of cavernous sinus meningioma for preservation and improvement of cranial nerve function. J Neurosurg 105:148–152

    PubMed  Google Scholar 

  16. Honeybul S, Neil-Dwyer G, Lang DA, Evans BT, Ellison DW (2001) Sphenoid wing meningioma en plaque: A clinical review. Acta Neurochir (Wien) 143:749–758

    Article  CAS  Google Scholar 

  17. Shrivastava RK, Sen C, Costantino P, Rocca RD (2005) Sphenoorbital meningiomas: surgical limitations and lesions learned in their long-term management. J Neurosurg 103:491–497

    PubMed  Google Scholar 

  18. Schick U, Bleyen J, Bani A, Hassler W (2006) Management of meningiomas en plaque of the sphenoid wing. J Neurosurg 104:208–214

    PubMed  Google Scholar 

  19. Shrivastava RK, Sen C, Costantino P, Rocca RD (2005) Sphenoorbital meningiomas: surgical limitations and lesions learned in their long-term management. J Neurosurg 103:491–497

    PubMed  Google Scholar 

  20. Maroon JC, Kennerdell JS, Vidovich DV, Abla A, Sternau L (1994) Recurrent spheno-orbital meningioma. J Neurosurg 80:202–208

    PubMed  CAS  Google Scholar 

  21. Little K, Friedman AH, Sampson JH, Wanibuchi M, Fukushima T (2005) Surgical management of petroclival meningiomas: Defining resection goals based on risk of neurological morbidity and tumor recurrence rates in 137 patients. Neurosurgery 56:546–559

    Article  PubMed  Google Scholar 

  22. Goel A, Muzumdar D (2004) Conventional posterior fossa approach for surgery on petroclival meningiomas: a report on an experience with 28 cases. Surg Neurol 62:332–340

    Article  PubMed  Google Scholar 

  23. Roberti F, Sekhar LN, Kalavakonda C, Wright DC (2001) Posterior fossa meningiomas: surgical experience in 161 cases. Surg Neurol 56:8–21

    Article  PubMed  CAS  Google Scholar 

  24. Couldwell WT, Fukushima T, Giannotta SL, Weiss MH (1996) Petroclival meningiomas: surgical experience with 109 cases. J Neurosurg 84:20–28

    PubMed  CAS  Google Scholar 

  25. Samii M, Tatagiba M, Carvalho GA (1999) Resection of large petroclival meningiomas by the simple retrosigmoid route. J Clin Neurosci 6:27–30

    Article  PubMed  Google Scholar 

  26. Jung HW, Yoo H, Paek SH, Choi KS (2000) Long-term outcome and growth rate of subtotally resected petroclival meningiomas: experience with 38 cases. Neurosurgery 46:567–575

    Article  PubMed  CAS  Google Scholar 

  27. George B, Lot G (1995) Foramen magnum meningiomas: a review from personal experience of 37 cases and from a cooperative study of 106 cases. Neurosurg Quarterly 5:149–167

    Google Scholar 

  28. Bassiouni H, Ntoukas V, Siamak A et al (2006) Foramen magnum meningiomas: clinical outcome after microsurgical resection via a posterolateral suboccipital retrocondylar approach. 59:1177–1187

  29. Schick U, Dott U, Hassler W (2004) Surgical management of meningiomas involving the optic nerve sheath. J Neurosurg 101:951–959

    PubMed  Google Scholar 

  30. Roser F, Nakamura M, Martini-Thomas R, Samii M, Tatagiba M (2006) The role of surgery in meningiomas involving the optic nerve sheath. Clin Neurol Neurosurg 108:470–476

    Article  PubMed  Google Scholar 

  31. Barbaro NM, Gutin PH, Wilson CB et al (1987) Radiation therapy in the treatment of partially resected meningiomas. Neurosurgery 20:525–528

    Article  PubMed  CAS  Google Scholar 

  32. Taylor BW Jr, Marcus RB Jr, Friedman WA et al (1988) The meningioma controversy: postoperative radiation therapy. Int J Radiat Oncol Biol Phys 15:299–304

    Article  PubMed  Google Scholar 

  33. Wara WM, Sheline GE, Newman H et al (1975) Radiation therapy of meningiomas. Am J Roentgenol Radium Ther Nucl Med 123:453–548

    PubMed  CAS  Google Scholar 

  34. Goldsmith BJ, Wara WM, Wilson CB et al (1994) Postoperative irradiation for subtotally resected meningiomas. A retrospective analysis of 140 patients treated from 1967 to 1990. J Neurosurg 80:195–201

    PubMed  CAS  Google Scholar 

  35. Miralbell R, Linggood RM, de la Monte S et al (1992) The role of radiotherapy in the treatment of subtotally resected benign meningiomas. J Neurooncol 13:157–164

    Article  PubMed  CAS  Google Scholar 

  36. Deinsberger R, Tidstrand J, Sabitzer H et al (2004) LINAC radiosurgery in skull base meningiomas. Minim Invasive Neurosurg 47:333–338

    Article  PubMed  CAS  Google Scholar 

  37. Kreil W, Luggin J, Fuchs I et al (2005) Long term experience of gamma knife radiosurgery for benign skull base meningiomas. J Neurol Neurosurg Psychiatry 76:1425–1430

    Article  PubMed  CAS  Google Scholar 

  38. Lee JY, Kondziolka D, Flickinger JC et al (2007) Radiosurgery for intracranial meningiomas. Prog Neurol Surg 20:142–149

    PubMed  Google Scholar 

  39. Mindermann T, de Rougemont O (2004) The significance of tumor location for Gamma Knife treatment of meningiomas. Stereotact Funct Neurosurg 82:194–195

    Article  PubMed  Google Scholar 

  40. Nicolato A, Giorgetti P, Foroni R et al (2005) Gamma knife radiosurgery in skull base meningiomas: a possible relationship between somatostatin receptor decrease and early neurological improvement without tumour shrinkage at short-term imaging follow-up. Acta Neurochir (Wien) 147:367–374; discussion 374–375

    Article  CAS  Google Scholar 

  41. Pollock BE, Stafford SL (2005) Results of stereotactic radiosurgery for patients with imaging defined cavernous sinus meningiomas. Int J Radiat Oncol Biol Phys 62:1427–1431

    Article  PubMed  Google Scholar 

  42. Selch MT, Ahn E, Laskari A et al (2004) Stereotactic radiotherapy for treatment of cavernous sinus meningiomas. Int J Radiat Oncol Biol Phys 59:101–111

    Article  PubMed  Google Scholar 

  43. Zachenhofer I, Wolfsberger S, Aichholzer M et al (2006) Gamma-knife radiosurgery for cranial base meningiomas: experience of tumor control, clinical course, and morbidity in a follow-up of more than 8 years. Neurosurgery 58:28–36; discussion 28–36

    Article  PubMed  Google Scholar 

  44. Chen JC, Giannotta SL, Yu C et al (2001) Radiosurgical management of benign cavernous sinus tumors: dose profiles and acute complications. Neurosurgery 48:1022–1030; discussion 1030–1032

    Article  PubMed  CAS  Google Scholar 

  45. Loeffler JS, Niemierko A, Chapman PH (2003) Second tumors after radiosurgery: tip of the iceberg or a bump in the road? Neurosurgery 52:1436–1440; discussion 1440–1442

    Article  PubMed  Google Scholar 

  46. Flickinger JC, Lunsford LD, Kondziolka D (1991) Dose-volume considerations in radiosurgery. Stereotact Funct Neurosurg 57:99–105

    Article  PubMed  CAS  Google Scholar 

  47. Marks LB, Spencer DP (1991) The influence of volume on the tolerance of the brain to radiosurgery. J Neurosurg 75:177–180

    PubMed  CAS  Google Scholar 

  48. Stafford SL, Pollock BE, Leavitt JA et al (2003) A study on the radiation tolerance of the optic nerves and chiasm after stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 55:1177–1181

    Article  PubMed  Google Scholar 

  49. Debus J, Hug EB, Liebsch NJ et al (1997) Brainstem tolerance to conformal radiotherapy of skull base tumors. Int J Radiat Oncol Biol Phys 39:967–975

    Article  PubMed  CAS  Google Scholar 

  50. Debus J, Hug EB, Liebsch NJ et al (1999) Dose-volume tolerance of the brainstem after high-dose radiotherapy. Front Radiat Ther Oncol 33:305–314

    PubMed  CAS  Google Scholar 

  51. Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122

    PubMed  CAS  Google Scholar 

  52. Alheit H, Saran FH, Warrington AP et al (1999) Stereotactically guided conformal radiotherapy for meningiomas. Radiother Oncol 50:145–150

    Article  PubMed  CAS  Google Scholar 

  53. Brell M, Villa S, Teixidor P et al (2006) Fractionated stereotactic radiotherapy in the treatment of exclusive cavernous sinus meningioma: functional outcome, local control, and tolerance. Surg Neurol 65:28–33; discussion 33–34

    Article  PubMed  Google Scholar 

  54. Debus J, Wuendrich M, Pirzkall A et al (2001) High efficacy of fractionated stereotactic radiotherapy of large base-of-skull meningiomas: long-term results. J Clin Oncol 19:3547–3553

    PubMed  CAS  Google Scholar 

  55. Milker-Zabel S, Zabel-du Bois A, Huber P et al (2006) Fractionated stereotactic radiation therapy in the management of benign cavernous sinus meningiomas: long-term experience and review of the literature. Strahlenther Onkol 182:635–640

    Article  PubMed  Google Scholar 

  56. Steinvorth S, Welzel G, Fuss M et al (2003) Neuropsychological outcome after fractionated stereotactic radiotherapy (FSRT) for base of skull meningiomas: a prospective 1-year follow-up. Radiother Oncol 69:177–182

    Article  PubMed  Google Scholar 

  57. Baumert BG, Norton IA, Davis JB (2003) Intensity-modulated stereotactic radiotherapy vs. stereotactic conformal radiotherapy for the treatment of meningioma located predominantly in the skull base. Int J Radiat Oncol Biol Phys 57:580–592

    Article  PubMed  Google Scholar 

  58. Pirzkall A, Carol M, Lohr F et al (2000) Comparison of intensity-modulated radiotherapy with conventional conformal radiotherapy for complex-shaped tumors. Int J Radiat Oncol Biol Phys 48:1371–1380

    Article  PubMed  CAS  Google Scholar 

  59. Pirzkall A, Debus J, Haering P et al (2003) Intensity modulated radiotherapy (IMRT) for recurrent, residual, or untreated skull-base meningiomas: preliminary clinical experience. Int J Radiat Oncol Biol Phys 55:362–372

    Article  PubMed  Google Scholar 

  60. Milker-Zabel S, Zabel-du Bois A, Huber P et al (2007) Intensity-Modulated Radiotherapy for Complex-Shaped Meningioma of the Skull Base: Long-term Experience of a Single Institution. Int J Radiat Oncol Biol Phys 68:858–863

    PubMed  Google Scholar 

  61. Nakamura JL, Pirzkall A, Carol MP et al (2003) Comparison of intensity-modulated radiosurgery with gamma knife radiosurgery for challenging skull base lesions. Int J Radiat Oncol Biol Phys 55:99–109

    Article  PubMed  Google Scholar 

  62. Gudjonsson O, Blomquist E, Nyberg G et al (1999) Stereotactic irradiation of skull base meningiomas with high energy protons. Acta Neurochir (Wien) 141:933–940

    Article  CAS  Google Scholar 

  63. Vernimmen FJ, Harris JK, Wilson JA et al (2001) Stereotactic proton beam therapy of skull base meningiomas. Int J Radiat Oncol Biol Phys 49:99–105

    Article  PubMed  CAS  Google Scholar 

  64. Weber DC, Lomax AJ, Rutz HP et al (2004) Spot-scanning proton radiation therapy for recurrent, residual or untreated intracranial meningiomas. Radiother Oncol 71:251–258

    Article  PubMed  Google Scholar 

  65. Noel G, Bollet MA, Calugaru V et al (2005) Functional outcome of patients with benign meningioma treated by 3D conformal irradiation with a combination of photons and protons. Int J Radiat Oncol Biol Phys 62:1412–1422

    Article  PubMed  Google Scholar 

  66. Baumert BG, Norton IA, Lomax AJ et al (2004) Dose conformation of intensity-modulated stereotactic photon beams, proton beams, and intensity-modulated proton beams for intracranial lesions. Int J Radiat Oncol Biol Phys 60:1314–1324

    Article  PubMed  Google Scholar 

  67. Korhonen K, Salminen T, Raitanen J et al (2006) Female predominance in meningiomas can not be explained by differences in progesterone, estrogen or androgen receptor expression. J Neurooncol 80:1–7

    Article  PubMed  CAS  Google Scholar 

  68. Omulecka A, Papierz W, Nawrocka-Kunecka A et al (2006) Immunohistochemical expression of progesterone and estrogen receptors in meningiomas. Folia Neuropathol 44:111–115

    PubMed  CAS  Google Scholar 

  69. Wolfsberger S, Doostkam S, Boecher-Schwarz HG et al (2004) Progesterone-receptor index in meningiomas: correlation with clinico-pathologial parameters and review of the literature. Neurosurg Rev 27:238–245

    PubMed  Google Scholar 

  70. Perry A, Cai D, Scheithauer B et al (2000) Merlin, DAL-1 and progesterone receptor expression in clinicopathologic subsets of meningioma: a correlative immunohistochemical study of 175 cases. J Neuropathol Exp Neurol 59:872–879

    PubMed  CAS  Google Scholar 

  71. Fewings P, Battersby R, Timperley W (2000) Long-term followup of progesterone receptor status in benign meningioma: a prognostic indicator of recurrence? J Neurosurg 92:401–405

    PubMed  CAS  Google Scholar 

  72. Pravdenkova S, Al-Mefty O, Sawyer J et al (2006) Progesterone and estrogen receptors: opposing prognostic indicators in meningiomas. J Neurosurg 105: 163–173

    PubMed  CAS  Google Scholar 

  73. Maiuri F, De Caro Mdel B, Esposito F et al (2007) Recurrences of meningiomas: predictive value of pathologic features and hormonal and growth factors. J Neuroncol 82:63–68

    Article  Google Scholar 

  74. Maiuri F, Montagnani S, Gallicchio B et al (1989) Oestrogen and progesterone sensitivity in cultured meningioma cells. Neurol Res 11:9–13

    PubMed  CAS  Google Scholar 

  75. Adams E, Schrell U, Fahlbusch R et al (1990) Hormonal dependency of cerebral meningiomas. Part 2: In vitro effects of steroids, bromocriptine, and epidermal growth factor receptor on growth of meningiomas. J Neurosurg 73:750–755

    PubMed  CAS  Google Scholar 

  76. Lamberts SW, Tanghe HL, Avezaat CJ et al (1992) Mifepristone (RU 486) treatment of meningiomas. J Neurol Neurosurg Psychiatry 55:486–490

    PubMed  CAS  Google Scholar 

  77. Grunberg SM, Weis MH, Spitz IM, Ahmadi J, Sudan J, Russell CA, Lucci L, Stevenson LL (1991) Treatment of unresectable meningiomas with the anti-progesterone agent mifepristone. J Neurosurg 74:861–866

    PubMed  CAS  Google Scholar 

  78. Grunberg SM, Weiss MH, Russell CA et al (2006) Long-term administration of mifepristone (RU486): clinical tolerance during extended treatment of meningioma. Cancer Invest 24:727–733

    Article  PubMed  CAS  Google Scholar 

  79. Ragel BT, Gillespie DL, Kushnir V et al (2006) Calcium channel antagonists augment hydroxyurea and RU486-induced inhibition of meningioma growth in vivo and in vitro. Neurosurgery 59:1109–1120

    Article  PubMed  Google Scholar 

  80. Goodwin J, Crowley J, Eyre H et al (1993) A phase II evaluation of Tamoxifen in unresectable or refrqactory meningiomas: a southweast Oncology Group study. J Neurooncol 15:75–77

    Article  PubMed  CAS  Google Scholar 

  81. Schrell UM, Rittig MG, Anders M et al (1977) Hydroxyurea for treatment of unresectable and recurrent meningiomas. II Decrease in size of meningiomas in patients treated with hydroxyurea. J Neurosurg 86:840–844

    Google Scholar 

  82. Mason WP, Gentili F, Mac Donald DR, Hariharan S, Cruz CR Abrey LE (2002) Stabilization of disease progression by hydroxyurea in patients with recurrent or unresectable meningioma. J Neurosurg 97:341–346

    PubMed  CAS  Google Scholar 

  83. Newton HB, Scott SR, Volpi C (2004) Hydroxyurea chemotherapy for meningiomas: Enlarged cohort with extended follow-up. Br J Neurosurg 18:495–499

    Article  PubMed  CAS  Google Scholar 

  84. Hahn BM, Schrell Um, Sauer R, Fahlbusch R, Ganslandt O, Grabenbauer GG (2005) Prolonged oral hydroxyurea and concurrent 3-d conformal radiation in patients with progressive or recurrent meningioma: results of a pilot study. J Neurooncol 74:157–165

    Article  PubMed  CAS  Google Scholar 

  85. Loven D, Hardoff R, Sever ZB, Steunmetz AP, Gornish M, Rappaport ZH, Fenig E, Ram Z, Sulkes A (2004) Nonresectable slow growing meningiomas treated with hydroxyurea. J Neurooncol 67:221–226

    Article  PubMed  Google Scholar 

  86. Chamberlain MC, Tsao-Wei DD, Groshen S (2004) Temozolomide for treatment-resistant recurrent meningioma. Neurology 62:1210–1212

    PubMed  CAS  Google Scholar 

  87. Chamberlain MC, Tsao-Wei DD, Groshen S (2006) Salvage chemotherapy with CPT-11 for recurrent meningioma. J Neuroncol 78:271–276

    Article  CAS  Google Scholar 

  88. Kaba SE, DeMonte F, Bruner JM et al (1997) The treatment of recurrent unresectable and malignant meningiomas with interferon alpha-2B. Neurosurgery 40:271–275

    Article  PubMed  CAS  Google Scholar 

  89. Perry A, Gutmann DH, Reifenberger G (2004) Molecular pathogenesis of meningiomas. J Neuro-Oncol 70:183–202

    Article  Google Scholar 

  90. Gusella JF, Ramesh V, MacCollin M et al (1999) Merlin: the neurofibromatosis 2 tumor suppressor. Biochem Biophys Acta 1423:M29–36

    PubMed  CAS  Google Scholar 

  91. McClatchey AI, Giovannini M (2005) Membrane organization and tumorigenesis- the NF2 tumor suppressor, Merlin. Genes Dev 19: 2265–2277

    Article  PubMed  CAS  Google Scholar 

  92. Wellenreuther R, Kraus JA, Lenartz D et al (1995) Analysis of the neurofibromatosis 2 gene reveals molecular variants of meningioma. Am J Pathol 146:827–833

    PubMed  CAS  Google Scholar 

  93. Vogel Y, Lenartz D, Schramm J et al (1997) Quantitative analysis of neurfibromatosis type 2 gene transcripts in meningiomas supports the concept of distinct molecular variants. Lab Invest 77:601–606

    PubMed  Google Scholar 

  94. Rutledge MH, Sarrazin J, Rangaratnam S et al (1994) Evidence for complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nat Genet 6:180–184

    Article  Google Scholar 

  95. Lee JH, Sundaram V, Stein DJ et al (1997) Reduced expression of Schwannomin/Merlin in human sporadic meningiomas. Neurosurgery 40:578–587

    Article  PubMed  CAS  Google Scholar 

  96. Antinheimo J, Haapasalo H, Haltia M et al (1997) Proliferation potential and histological features in neurofibromatosis 2-associated and sporadic meningiomas. J Neurosurg 87:610–614

    Article  PubMed  CAS  Google Scholar 

  97. Lamszus K, Vahldeik F, Mautner VF et al (2000) Allelic losses in neurofibromatosis 2-associated meningiomas. J Neuropathol Exp Neurol 59:504–512

    PubMed  CAS  Google Scholar 

  98. Dumanski JP, Rouleau GA, Nordenskjold M et al (1990) Molecular genetic analysis of chromosome 22 in 81 cases of meningioma. Cancer Res 50:5863–5867

    PubMed  CAS  Google Scholar 

  99. Weisman AS, Raguet SS, Kelly PA (1987) Characterization of the epidermal growth factor receptor in human meningioma. Cancer Res 47:2172–2176

    PubMed  CAS  Google Scholar 

  100. Jones NR, Rossi ML, Gregoriou M et al (1990) Epidermal growth factor receptor expression in 72 meningiomas. Cancer 66:152–155

    Article  PubMed  CAS  Google Scholar 

  101. Johnson MD, Horiba M, Arteaga C (1994) The epidermal growth factor receptor is associated with phospholipase C γ in meningiomas. Human Pathol 25:146–153

    Article  CAS  Google Scholar 

  102. Carroll RS, Black PM, Zhang J et al (1997) Expression and activation of epidermal growth factor receptors in meningiomas. J Neurosurg 87:315–323

    PubMed  CAS  Google Scholar 

  103. Wang J-L, Nister M, Hermansson M, Westermark B et al (1990) Expression of PDGF β-receptors in human meningioma cells. Int. J. Cancer 46:772–778

    Article  PubMed  CAS  Google Scholar 

  104. Maxwell M, Galanopoulos T, Hedley-Whyte ET et al (1990) Human meningiomas co-express platelet-derived growth factor (PDGF) and PDGF-receptor genes and their protein products. Int J Cancer 46:16–21

    Article  PubMed  CAS  Google Scholar 

  105. Shamah SM, ALberta JA, Giannobile WV et al (1997) Detection of activated platlet-derived growth factor receptors in human meningioma. Cancer Res 57:4141–4147

    PubMed  CAS  Google Scholar 

  106. Lingood RM, Hsu DW, Efird JT et al (1995) TGF-alpha expression in meningioma-tumor progression and therapeutic response. J Neuro-Oncol 26:45–51

    Article  Google Scholar 

  107. Hsu QW, Efird JT, Hedley-Whyte ET (1998) MIB-1(Ki-67) index and transforming growth factor alpha (TGF-alpha) immunoreactivity are significant prognostic predictors for meningiomas. Neuropathol Appl Neurobiol 24:441–452

    Article  PubMed  CAS  Google Scholar 

  108. Van Setten GB, Edstrom L, Stibler H et al (1999) Levels of transforming growth factor alpha (TGF-α) in human cerebrospinal fluid. Int J Dev Neurosci 17:131–134

    Article  PubMed  Google Scholar 

  109. Adams EF, Schrell UMH, Thieruf P et al (1991) Autocrine control of human meningioma proliferation: secretion of platelet-derived growth factor-like molecules. Int J Cancer 49:398–402

    Article  PubMed  CAS  Google Scholar 

  110. Todo T, Adams EF, Fahlbusch R et al (1996) Autocrine growth stimulation of human meningioma cells by platelet-derived growth factor. J Neurosurgery 84:852–859

    CAS  Google Scholar 

  111. Nister M, Enbland P, Backstrom G et al (1994) Platelet-derived growth factor (PDGF) in neoplastic and non-neoplastic cystic lesions of the central nervous system and in the cerebrospinal fluid. Br J Cancer 69:952–956

    PubMed  CAS  Google Scholar 

  112. Pronk GL, Bos JL (1994) The role of p21 ras in receptor tyrosine kinase signaling. Biochim Biophys Acta 1198:131–147

    PubMed  Google Scholar 

  113. Blume-Jensen P, Hunter T (2001) Oncogenic kinase signaling. Nature 411:355–365

    Article  PubMed  CAS  Google Scholar 

  114. Shu J, Lee JH, Harwalkar JA et al (1999) Adenovirus-mediated gene transfer of dominant negative H-ras inhibits proliferation of primary meningioma cells. Neurosurgery 44:579–587

    Article  PubMed  CAS  Google Scholar 

  115. Lewis TS, Shapiro PS, Ahn NG (1998) Signal transduction through MAP Kinase cascades. Adv Cancer Res 74:49–139

    PubMed  CAS  Google Scholar 

  116. Marshall MS (1995) Ras target proteins in eukaryotic cells. FASEB J 9:1311–1318

    PubMed  CAS  Google Scholar 

  117. Kock W (2000) Meaningful relationships: the regulation of the Ras/Raf/Mek/ERK pathway by protein interactions. Biochem J 351:289–305

    Article  Google Scholar 

  118. Sivaraman VS, Wang H, Nuvovo GJ et al (1997) Hyperexpression of mitogen-activated kinase in human breast carcinoma. J Clin Invst 7:1478–1483

    Article  Google Scholar 

  119. Mandell JW, Hussaini IM, Zecevic M et al (1998) In situ visualization of intratumor growth factor signaling. Am J Pathol 153:1411–1423

    PubMed  CAS  Google Scholar 

  120. Johnson MD, Woodard A, Kim P et al (2001) Evidence for mitogen associated protein kinase activation and transduction of mitogenic signals from platelet derived growth factor in human meningioma cells. J Neurosurg 94:303–310

    Google Scholar 

  121. Mawrin C, Sasse T, Kirches E et al (2005) Different activation of mitogen activated protein kinase and Akt signalling is associated with aggressive phenotype of human meningiomas. Clin Cancer Res 11:4074–4082

    Article  PubMed  CAS  Google Scholar 

  122. Nicholson KM, Anderson NG (2002) The Akt/PKB signaling pathway in human malignancy. Cell Signal 14:381–395

    Article  PubMed  CAS  Google Scholar 

  123. Walker TR, Moore SM, Lawson MF et al (1998) Platelet-derived growth factor-BB and thrombin activate phophoinositide 3-kinase and protein kinase B: Role in mediating airway smooth muscle proliferation. Mol Pharmacol 54:1007–1015

    PubMed  CAS  Google Scholar 

  124. Roche S, Koegl M, Courtneidge SA (1994) The phosphatidylinositol 3-kinase A is required for DNA synthesis by some but not all growth factors. PNAS 91:9185–9189

    Article  PubMed  CAS  Google Scholar 

  125. Shayesteh L, Lu Y, Kuo W-L et al (1999) PI3KCA is implicated as an oncogene in ovarian cancer. Nat Genet 21:99–102

    Article  PubMed  CAS  Google Scholar 

  126. Sun M, Wang G, Paciga JE et al (2001) AKT1/PKBalpha kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH33T3 cells. Am J Pathol 159:431–437

    PubMed  CAS  Google Scholar 

  127. Johnson MD, Okediji E, Woodard A el al (2002) Evidence for Phosphatidylinositol 3-Kinase Akt-p70S6K Pathway Activation and Transduction of Mitogenic Signals by Platelet Derived Growth Factor in Human Meningioma Cells J Neurosurg 97:668–675

    PubMed  CAS  Google Scholar 

  128. Conway A-M, Rakhit S, Pyne S et al (1999) Platelet-derived-growth-factor stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle: role pertussis-toxin-sensitive G-proteins, c-Src tyrosine kinases and phosphoinositide 3-kinase. Biochem J 337:171–177

    Article  PubMed  CAS  Google Scholar 

  129. Yart A, Laffargue M, Mayeux P et al (2001) A critical role for phosphoinositide 3-kinase upstream of Gab 1 and SHP2 in the activation of Ras and mitogen-activated protein kinase by epidermal growth factor. J Biol Chem 276:8856–8864

    Article  PubMed  CAS  Google Scholar 

  130. Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9:59–71

    Article  PubMed  CAS  Google Scholar 

  131. Lin L-L, Wartmann M, Lin AY et al (1993) cPLA2 is phosphorylated and activated by MAP kinase. Cell 27:269–278

    Article  Google Scholar 

  132. Castelli MG, Chiabrando C, Fanelli R et al (1989) Prostaglandin and thromboxane synthesis by human intracranial tumors. Cancer Res 15:1505–1508

    Google Scholar 

  133. Gaetani P, Butti G, Chiabrando C et al (1991) A study of the biological behavior of human brain tumors. Part I. Arachidonic acid metabolism and DNA content. J Neuro-Oncol 10:233–240

    CAS  Google Scholar 

  134. Wang D, Buchanan FG, Wang H et al (2005) Prostaglandin E2 enhances intestinal adenoma growth via activation of the Ras-mitogen-activated protein kinase cascade. Cancer Res 65:1822–1829

    Article  PubMed  CAS  Google Scholar 

  135. Dannenberg AJ, Subbaramaiah K (2003) Targeting cyclooxygenase-2 in human neoplasia: Rationale and promise. Cancer Cell 4:431–436

    Article  PubMed  CAS  Google Scholar 

  136. Pai R, Soreghan B, Szabo Il et al (2002) Prostaglandin E2 transactivates EGF receptor: A novel mechanism for promoting cancer growth and gastrointestinal hypertrophy. Nat Med 8:289–293

    Article  PubMed  CAS  Google Scholar 

  137. Wang Z, Gluck S, Zhang L et al (1998) Requirement for phospholipase C-1 enzymatic activity in growth factor-induced mitogenesis. Mol Cell Biol 18:590–597

    PubMed  CAS  Google Scholar 

  138. Wahl MI, Olashaw NE, Nishibe S et al (1989) Platelet-derived growth factor induces rapid and sustained tyrosine phosphorylation of phospholipase C-γ in quiescent BALB/c 3T3 cells. Mol Cell Biol 9:2934–2943

    PubMed  CAS  Google Scholar 

  139. Buckley CT, Sekiya F, Kim YJ et al (2004) Identificationof phospholipase C-1 as a mitogen-activated protein kinase substrate. J Biol Chem 40:41807–41814

    Article  CAS  Google Scholar 

  140. Harari PM (2004) Epidermal growth factor receptor inhibition strategies in oncology. Endocr Relat Cancer 11:689–708

    Article  PubMed  CAS  Google Scholar 

  141. Singer CF, Hudelist G, Lamm W et al (2004) Expression of tyrosine kinases in human malignancies as potential targets for kinase specific inhibitors. Endocrine-related Cancer 11:861–869

    Article  PubMed  CAS  Google Scholar 

  142. Huang S, Armstrong EA, Benavente S et al (2004) Dual-agent targeting of the epidermal growth factor (EGFR): combining anti-EGFR antibody and tyrosine kinase inhibitor. Cancer Res 64:5355–5362

    Article  PubMed  CAS  Google Scholar 

  143. Rich Jn, Reardon DA, Peery T, Dowell JM, Quinn JA, Penne KL et al (2004) Phase II trial of gefitinib in recurrent glioblastoma. J Clin Oncol 22:132–142

    Google Scholar 

  144. Prados MD, Lamborn KR, Chang S, Burton E, Butowski N, Malec M et al (2006) Phase I study of erlotinib HCL alone and combined with temozolamide in patients with stable or recurrent malignant glioma. Neuro Oncology 8:67–78

    Article  PubMed  CAS  Google Scholar 

  145. Vogelbaum MA, Peereboom D, Stevens G, Barnett G, Brewer C (2004) Phase II rial of EGFR tyrosien kines inhibitor erlotinib for single agent therapy of recurrent glioblastoma multiforme: interim results. Proc Am Soc Oncol 22:1558a

    Google Scholar 

  146. Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan Zhu S Dia EQ et al (2005). Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353:2012–2202

    Article  PubMed  CAS  Google Scholar 

  147. Lassman AB, Abrey LE, Gilbert MR (2006) Response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 354:525–526

    Article  PubMed  CAS  Google Scholar 

  148. Giaccone G, Johnson DH, Manegold C et al (2002) A phase III clinical trial of ZD1839 (“Iressa”) in combination with gemcitabine and cisplatin in chemotherapy naïve patients with advanced non-small-cell lung cancer (INTACT 1). Ann Oncol 13(Suppl 5):2–3

    Google Scholar 

  149. Haas-Kogan DA, Prados MD, Tihan T, Eberhard DA, Jelluma N, Arvold ND et al (2005) Epidermal growth factor receptor, protein kinase B/Akt and glioma response to erlotinib. J Natl Cancer Inst 97:880–887

    Article  PubMed  CAS  Google Scholar 

  150. Torrance CJ, Jackson PE, Montgomery E et al (2000) Combinatorial chemoprevention of intestinal neoplasia. Nat Med 6:1024–1028

    Article  PubMed  CAS  Google Scholar 

  151. Eller JL, Longo SL, Kyle MM, Bassano D, Hicklin D, Canute G (2005) Anti-epidermal growth factor receptor monoclonal antibody cetuximab augments radiation effects in glioblastoma multiforme in vitro and in vivo. Neurosurgery 56:155–162

    PubMed  Google Scholar 

  152. Combs SE, Heeger S, Haselmann R, Edler L, Debus J, Schulz-Ertner D (2006). Treatment of primary glioblastoma multiforme with cetuximab, radiotherapy and temozolamide (GERT) – phase I/II trial: study protocol. BMC Cancer 6: 133–140

    Article  PubMed  CAS  Google Scholar 

  153. Haluska P, Dy GK, Adjei AA (2002) Farnesyl transferase inhibitors as anticancer agents. European J Cancer 38:1685–1700

    Article  CAS  Google Scholar 

  154. Appels NM, Beijnen JH, Schellens JH (2005) Development of farnesyl transferase inhibitors: a review. Oncologist 10:565–578

    Article  PubMed  Google Scholar 

  155. Johnson MD, Woodard A, Okediji EJ et al (2002) Lovastatin is a potent inhibitor of meningioma cell proliferation: evidence for inhibition of a mitogen associated protein kinase. J Neuro-Oncol 56:133–142

    Article  Google Scholar 

  156. Kohno M, Pouyssegur J (2006) Targeting the ERK signaling pathway in cancer therapy. Ann Med 38:200–211

    Article  PubMed  CAS  Google Scholar 

  157. Choe G, Horvath S, Cloughesy TF, Crosby K, Seligson D, Palotie A, Inge L, Smith BL, Sawyers CL, Mischel PS (2003) Analysis of the phosphatidylinositol 3-kinase signaling pathway in glioblastoma patients in vivo. Caner Res 63:2742–2746

    CAS  Google Scholar 

  158. Nakamura JL, Karlsson A, Arvold ND, Gottschalk Ar, Pieper RO, Stokoe D, Haas-Kogan DA (2005) PKB/Akt mediates radiosensitization by signaling inhibitor LY294002 in human malignant gliomas. J Neuroncol 71:215–222

    Article  CAS  Google Scholar 

  159. Witzig TE, Kaufmann SH (2006) Inhibition of the phosphatidylinositol 3-kinase/mammalian target of rapamycin pathway in hematologic malignancies. Curr Treat Options Oncol 7:285–294

    Article  PubMed  Google Scholar 

  160. Ragel BT, Jensen RL, Gillespie DL, Prescott SM Couldwell WT (2005) Ubiquitous expression of cyclooxygenase-2 in meningiomas and decrease in cell growth following in vitro treatment with the inhibitor celecoxib: potential therapeutic implications. J Neurosurg 103:508–517

    PubMed  CAS  Google Scholar 

  161. Dannenberg AJ, Lippman SM, Mann JR, Subbaramaiah K, Dubois RN (2005) Cyclooxygenase-2 and epidermal growth factor receptor: Pharmacologic targets for chemoprevention. J Clin Oncol 23:254–266

    Article  PubMed  CAS  Google Scholar 

  162. Paek SH, Kim CY, Kim YY, Park IA, Kim MS, Kim DG, Jung HW (2002) Correlation of clinical and biological parameters with peritumoral edema in meningiomas. J Neurooncol 60:235–45

    Article  PubMed  Google Scholar 

  163. Singer CF, Hudelist G, Lamm W et al (2004) Expression of tyrosine kinases in human malignancies as potential targets for kinase specific malignancies. Cancer 11:861–869

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahlon D. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, M.D., Sade, B., Milano, M.T. et al. New prospects for management and treatment of inoperable and recurrent skull base meningiomas. J Neurooncol 86, 109–122 (2008). https://doi.org/10.1007/s11060-007-9434-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-007-9434-z

Keywords

Navigation