Skip to main content
Log in

Functional Role of Dragonfly Legs before and after Wing Formation: Rearrangement of Coordinatory Relationships

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

We report here our studies of the characteristics of the structural-functional organization of the leg apparatus of the dragonfly Aeshna grandis, in larvae of the final instar, whose legs have a locomotor function, and in adult winged individuals (imagoes), whose legs have lost their locomotor function and are used mainly as traps to catch prey in the air. Neither the shape nor the proportions of individual leg segments in imagoes were significantly different from those in larvae, and all changes in the functional role of the legs in imagoes occur as a result of changes in the mechanisms controlling the functioning of the leg muscles and the corresponding rearrangements in coordinatory relationships. These rearrangements, as evidenced by the data reported here, affect the mechanisms generating motor commands, the appearance of a tight correlation in the operation of the wing muscles and the leg apparatus, and various others. These mechanisms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Zavarzin, Characteristics of the Evolutionary Histology of the Nervous System, Medgiz, Moscow, Leningrad (1941).

    Google Scholar 

  2. S. I. Plotnikova and I. L. Isavnina, “Olfaction in the dragonfly Aeschna grandis,” Zh. Evolyuts. Biokhim. Fiziol., 48, No. 5, 515–516 (2012).

    CAS  Google Scholar 

  3. S. I. Plotnikova, V. L. Siderskii, and V. S. Gorelkin, “Characteristics of the structural-functional organization of the motor neuropil of the thoracic ganglia in dragonflies,” Zh. Evolyuts. Biokhim. Fiziol., 48, No. 5, 509–514 (2012).

    CAS  Google Scholar 

  4. V. L. Siderskii and S. I. Plotnikova, “The structural-functional organization of the mushroom bodies of dragonflies and some general conclusions on the purposes of these formations,” Zh. Evolyuts. Biokhim. Fiziol., 40, No. 6, 495–507 (2004).

    Google Scholar 

  5. V. L. Siderskii, S. I. Plotnikova, and V. S. Gorelkin, “Structural-functional characteristics of the wing apparatus of insects with and without manoeuver flight,” Zh. Evolyuts. Biokhim. Fiziol., 44, No. 6, 545–555 (2008).

    Google Scholar 

  6. V. L. Siderskii, V. S. Gorelkin, S. I. Plotnikova, and I. Yu. Severina, “The flight of dragonflies: leg function and the problem of flight inhibition,” Zh. Evolyuts. Biokhim. Fiziol., 45, No. 5, 524–526 (2009).

    Google Scholar 

  7. V. L. Siderskii, S. I. Plotnikova, and V. L. Gorelkin, “The mechanisms supporting fast motor reactions in dragonflies in flight,” Zh. Evolyuts. Biokhim. Fiziol., 46, No. 5, 440–441 (2010).

    Google Scholar 

  8. U. Bässler, “Interaction of central and peripheral mechanisms during walking in the first instar stick insects, Extatosoma tiaratum,” Physiol. Entomol., 4, 193–199 (1979).

    Article  Google Scholar 

  9. F. Delcomyn, “The locomotion of the cockroach, Periplaneta americana,” J. Exp. Biol., 54, 443–445 (1971).

    Google Scholar 

  10. G. Fraenkel, “Untersuchungen über die Koordination von Reflexen und automatische-nervösen Rhythmen bei Insekten. I. Die Flugreflexe der Insekten und ihre Koordination,” Ztschr. Vergl. Physiol., 16, 371–393 (1932).

    Google Scholar 

  11. L. Frantsevich and W. Wang, “Gimbals in the insect leg,” Arthropod Structure Dev., 38, 16–30 (2009).

    Article  Google Scholar 

  12. K. G. Leipelt, F. Suhling, and S. N. Gorb, “Ontogenetic shifts in functional morphology of dragonfly legs (Odonata: Anisoptera),” Zoology, 113, 317–325 (2010).

    Article  PubMed  Google Scholar 

  13. R. M. Olberg, A. H. Worthington, A. H. Fox, et al., “Prey size selection and distance estimation in foraging adult dragonflies,” J. Comp. Physiol., A191, 791–797 (2005).

    Article  Google Scholar 

  14. R. M. Olberg, “Visual control of prey-capture flight in dragonflies,” Curr. Opin. Neurobiol., 22, 1–5 (2011).

    Google Scholar 

  15. K. G. Pearson and J. F. interleukins, “Discharge patterns of coxal levator and depressor motoneurones of the cockroach, Periplaneta americana,” J. Exp. Biol., 52, 139–165 (1970).

    CAS  PubMed  Google Scholar 

  16. K. G. Pearson and J. F. Iles, “Innervation of coxal depressor muscles in the cockroach, Periplaneta americana,” J. Exp. Biol., 54, 215–232 (1971).

    CAS  PubMed  Google Scholar 

  17. T. E. Sherk, “Development of the compound eyes of dragonflies (Odonata). II. Development of the larval compound eyes,” J. Exp. Zool., 203, 47–60 (1978).

    Article  CAS  PubMed  Google Scholar 

  18. T. E. Sherk, “Development of the compound eyes of dragonflies (Odonata). III. Adult compound eyes,” J. Exp. Zool., 203, 61–80 (1978).

    Article  CAS  PubMed  Google Scholar 

  19. R. J. Tillyard, The Biology of Dragonflies, Cambridge University Press, Cambridge (1917).

    Google Scholar 

  20. T. Weis-Fogh, “Biology and physics of locust flight. IV. Notes on sensory mechanisms, in locust flight,” Phil. Trans. Roy. Soc., B239, 553–584 (1956).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Sviderskii.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 98, No. 11, pp. 1432–1440, November, 2012.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sviderskii, V.L., Plotnikova, S.I., Gorelkin, V.S. et al. Functional Role of Dragonfly Legs before and after Wing Formation: Rearrangement of Coordinatory Relationships. Neurosci Behav Physi 44, 804–809 (2014). https://doi.org/10.1007/s11055-014-9987-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-014-9987-1

Keywords

Navigation