Skip to main content
Log in

Effects of Strabismus and Monocular Deprivation on the Sizes of Callosal Cells in Cortical Fields 17 and 18 in the Cat Brain

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Structural changes in the visual cortex were studied in conditions of deranged binocular experience by assessing the sizes (body areas) of callosal cells in fields 17 and 18 in monocularly deprived cats and in cats with convergent strabismus. These cells were detected by injection of horseradish peroxidase into columns in cortical fields 17 and 18 and the fields 17/18 transitional zone. In both groups, the mean size of callosal cells in field 17 was greater than normal, though this difference in field 18 was seen only in monocularly deprived cats. Differences in the mean sizes of field 17 and 18 cells in cats of the study groups were found to be due to the number of large cells. In cats with strabismus, callosal cells of size greater than 200 μm2 accounted for 58% of cells in field 17 and 8% in field 18. In monocularly deprived cats, there was no difference in the proportions of large callosal cells in these fields (28% and 26%, respectively). These data provide evidence that cytoarchitectonic changes occurred in layers of the visual cortex, serving as sources of interhemisphere connections, in conditions of early derangement of binocular experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. V. Alekseenko, S. N. Toporova, and F. N. Makarov, “Neuronal connections uniting the visual hemifields,” Sensor. Sistemy, 16, No. 2, 83–88 (2002).

    Google Scholar 

  2. S. V. Alekseenko, S. N. Toporova, and P. Yu. Shkorbatova, “Interhemisphere connections of eye dominance columns in the visual cortex of cats with impairments to binocular vision,” Ros. Fiziol. Zh., 94, No. 6, 627–636 (2008).

    CAS  Google Scholar 

  3. S. V. Alekseenko, S. N. Toporova, and P. Yu. Shkorbatova, “The sizes of cells mediating interhemisphere and intrahemisphere connections in the visual cortex of cats with impaired binocular vision,” Ros. Fiziol. Zh., 97, No. 3, 302–307 (2011).

    CAS  Google Scholar 

  4. I. L. Kropman, Physiology of Binocular Vision and Disorders in Convergent Strabismus [in Russian], Meditsina, Leningrad (1966).

    Google Scholar 

  5. G. I. Rozhkova and S. G. Matveev, Vision in Children: Problems of Assessment and Functional Correction [in Russian], Nauka, Moscow (2007).

    Google Scholar 

  6. N. Berardi, S. Bisti, A. Cattaneo, et al., “Correlation between the preferred orientation and spatial frequency of neurones in visual areas 17 and 18 of the cat,” J. Physiol., 323, 613–618 (1982).

    Google Scholar 

  7. C. Blakemore, “The conditions required for the maintenance of binocularity in the kitten’s visual cortex,” J. Physiol., 261, No. 2, 423–444 (1976).

    CAS  PubMed  Google Scholar 

  8. Y. M. Chino, M. S. Shansky, W. L. Jankowski, and F. A. Banser, “Effects of rearing kittens with convergent strabismus on development of receptive-field properties in striate cortex neurons,” J. Neurophysiol., 50, No. 1, 265–286 (1983).

    CAS  PubMed  Google Scholar 

  9. Y. M. Chino, H. Cheng, E. L. Smith, 3rd, et al., “Early discordant binocular vision disrupts signal transfer in the lateral geniculate nucleus,” Proc. Natl. Acad. Sci. USA, 91, No. 15, 6938–6942 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. M. L. Crawford and G. K. von Noorden, “Concomitant strabismus and cortical eye dominance in young rhesus monkeys,” Trans. Ophthalmol. Soc. UK, 99, No. 3, 369–374 (1979).

    CAS  PubMed  Google Scholar 

  11. S. G. Crewther, D. P. Crewther, and B. G. Cleland, “Convergent strabismic amblyopia in cats,” Exp. Brain Res., 60, No. 1, 1–9 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. N. W. Daw, Visual Development, Springer, New York (2006).

    Google Scholar 

  13. B. Dreher, A. G. Leventhal, and P. T. Hale, “Geniculate input to cat visual cortex: a comparison of area 19 with areas 17 and 18,” J. Neurophysiol., 44, 804–826 (1980).

    CAS  PubMed  Google Scholar 

  14. D. A. Ferster, “A comparison of bipolar depth mechanisms in areas 17 and 18 of the cat visual cortex,” J. Physiol., 311, 623–655 (1981).

    CAS  PubMed  Google Scholar 

  15. D. Ferster, “X- and Y-mediated synaptic potentials in neurons of areas 17 and 18 of cat visual cortex,” Vis. Neurosci., 4, No. 2, 115–133 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. T. F. Freund, K. A. Martin, and D. Whitteridge, “Innervation of cat visual areas 17 and 18 by physiologically identified X- and Y-type thalamic afferents. I. Arborization patterns and quantitative distribution of postsynaptic elements,” J. Comp. Neurol., 242, No. 2, 263–274 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. L. Galli, L. Chalupa, L. Maffei, and S. Bisti, “The organization of receptive fields in area 18 neurones of the cat varies with the spatiotemporal characteristics of the visual stimulus,” Exp. Brain Res., 71, No. 1, 1–7 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Z. Henderson, “An anatomical investigation of projections from lateral geniculate nucleus to visual cortical areas 17 and 18 in newborn kittens,” Exp. Brain Res., 46, No. 2, 177–185 (1982).

    Article  CAS  PubMed  Google Scholar 

  19. D. H. Hubel and T. N. Wiesel, Brain and Visual Perception, Oxford University Press, New York (2005).

    Google Scholar 

  20. A. J. Humphrey, M. Sur, D. J. Ulrich, and S. M. Sherman, “Termination patterns of individual X- and Y-cell axons in the visual cortex of the cat: projections to area 18, to the 17/18 border region, and to both areas 17 and 18,” J. Comp. Neurol., 233, No. 2, 190–212 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. H. Ideda and M. J. Wright, “Properties of LGN cells in kittens reared with convergent squint: a neurophysiological demonstration of amblyopia,” Exp. Brain Res., 25, No. 1, 63–77 (1976).

    Google Scholar 

  22. K. R. Jones, R. E. Kalil, and P. D. Spear, “Effects of strabismus on responsivity, spatial resolution, and contrast sensitivity of cat lateral geniculate neurons,” J. Neurophysiol., 52, No. 3, 538–552 (1984).

    CAS  PubMed  Google Scholar 

  23. R. E. Kalil, P. D. Spear, and A. Langsetmo, “Response properties of striate cortex neurons in cats raised with divergent or convergent strabismus,” J. Neurophysiol., 52, No. 3, 514–537 (1984).

    CAS  PubMed  Google Scholar 

  24. M. S. Loop and S. M. Sherman, “Visual discrimination during eyelid closure in the cat,” Brain Res., 128, No. 2, 329–339 (1977).

    Article  CAS  PubMed  Google Scholar 

  25. S. Löwel and R. Engelmann, “Neuroanatomical and neurophysiological consequences of strabismus: changes in the structural and functional organization of the primary visual cortex in cats with alternating fixation and strabismic amblyopia,” Strabismus, 10, No. 2, 95–110 (2002).

    Article  PubMed  Google Scholar 

  26. J. A. Matsubara, R. Chase, and M. Thejomven, “Comparative morphology of three types of projection-identified pyramidal neurons in the superficial layers of cat visual cortex,” J. Comp. Neurol., 366, No. 1, 93–108 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. C. Milleret, “Visual callosal connections and strabismus,” Behav. Brain Res., 64, No. 1–2, 85–95 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. C. Milleret and J. C. Housel, “Visual interhemispheric transfer to areas 17 and 18 in cats with convergent strabismus,” Eur. J. Neurosci., 13, No. 1, 137–152 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. J. A. Movshon, I. D. Thompson, and D. J. Tolhurst, “Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat’s visual cortex,” J. Physiol., 283, 101–120 (1978).

    CAS  PubMed  Google Scholar 

  30. G. D. Mower, J. L. Burchfield, and F. H. Duffy, “Animal models of strabismic amblyopia: physiological studies of visual cortex and the lateral geniculate nucleus,” Brain Res., 281, No. 3, 311–327 (1982).

    Article  CAS  PubMed  Google Scholar 

  31. J. F. Olavarria, “Non-mirror-symmetric patterns of callosal linkages in areas 17 and 18 in cat visual cortex,” J. Comp. Neurol., 366, 643–655 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. C. D. Olson and R. D. Freeman, “Progressive changes in kitten striate cortex during monocular deprivation,” J. Neurophysiol., 38, 26–32 (1975).

    CAS  PubMed  Google Scholar 

  33. G. A. Orban, H. Kennedy, and H. Maes, “Functional changes across the 17–18 border in the cat,” Exp. Brain Res., 39, 177–186 (1980).

    Article  CAS  PubMed  Google Scholar 

  34. B. R. Payne, “Representation of the ipsilateral visual field in the transition zone between areas 17 and 18 of the cat’s cerebral cortex,” Vis. Neurosci., 4, No. 3, 445–474 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. N. L. Rochefort, P. Buzás, Z. F. Kisvárday, et al., “Layout of transcallosal activity in cat visual cortex revealed by optical imaging,” Neuroimage, 36, No. 3, 804–821 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. F. Sengpiel, C. Blakemore, P. C. Kind, and R. Harrad, “Interocular suppression in the visual cortex of strabismic cats,” J. Neurosci., 14, No. 11, part 2, 68955–6871 (1994).

    Google Scholar 

  37. K. Shoumura, “Further studies on the size specificity of commissural projecting neurons of layer III in areas 17, 18, 19 and the lateral suprasylvian area of the cat’s visual cortex,” Arch. Histol. Jpn., 44, No. 1, 51–69 (1981).

    Article  CAS  PubMed  Google Scholar 

  38. W. Singer, F. Tretter, and M. Cynader, “Organization of cat striate cortex: a correlation of receptive-field properties with afferent and efferent connections,” J. Neurophysiol., 38, No. 5, 1080–1098 (1975).

    CAS  PubMed  Google Scholar 

  39. J. Stone and B. Dreher, “Projection of X- and Y-cells of the cat’s lateral geniculate nucleus to areas 17 and 18 of visual cortex,” J. Neurophysiol., 36, No. 3, 551–567 (1973).

    CAS  PubMed  Google Scholar 

  40. M Sur, A. L. Humphrey, and S. M. Sherman, “Monocular deprivation affects X- and Y-cell retinogeniculate terminations in cats,” Nature, 300, No. 5888, 183–185 (1982).

    Article  CAS  PubMed  Google Scholar 

  41. J. T. Trachtenberg, C. Trepel, and M. P. Stryker, “Rapid extragranular plasticity in the absence of thalamocortical plasticity in the developing primary visual cortex,” Science, 287, No. 5460, 2029–2032 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. J. T. Trachtenberg and M. P. Stryker, “Rapid anatomical plasticity of horizontal connections in the developing visual cortex,” J. Neurosci., 21, No. 10, 3476–3482 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  43. R. J. Tusa, L. A. Palmer, and A. C. Rosenquist, “Multiple cortical visual areas: Visual field topography in the cat,” in: Cortical Sensory Organization, C. N. Woolsey (ed.), Humana Press, New York (1981), pp. 1–31.

    Google Scholar 

  44. R. C. Van Sluyters and F. B. Levitt, “Experimental strabismus in the kitten,” J. Neurophysiol., 43, No. 3, 686–699 (1980).

    PubMed  Google Scholar 

  45. T. N. Wiesel and D. H. Hubel, “Effects of visual deprivation on morphology and physiology of cells in the cat’s lateral geniculate body,” J. Neurophysiol., 26, 9788–993 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Alekseenko.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 98, No. 4, pp. 479–487, April, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekseenko, S.V., Shkorbatova, P.Y. & Toporova, S.N. Effects of Strabismus and Monocular Deprivation on the Sizes of Callosal Cells in Cortical Fields 17 and 18 in the Cat Brain. Neurosci Behav Physi 44, 101–106 (2014). https://doi.org/10.1007/s11055-013-9880-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-013-9880-3

Keywords

Navigation