Skip to main content
Log in

Cortical-Subcortical Interactions and the Regulation of the Functional State of the Brain in Acute Hypoxia in Humans

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The mechanisms regulating the functional state (FS) of the brain were studied in humans in conditions of dosed acute hypoxia (breathing a mixture of 8% oxygen in nitrogen for 15–25 min). The dynamics of the FS of the brain due to changes in the balance of the activities of brain regulatory structures in hypoxia were reflected in rearrangements of EEG spatial relationships (factor and cluster analysis of EEG crosscorrelation matrixes) and the redistribution of intracerebral locations of electrically equivalent dipole sources (EEDS), with increases in EEDS density in the projections of the medial and basal parts of the temporal lobes of the hemispheres (EEDS tomography data). Changes in cortical-subcortical interactions were characterized by a decrease in the tone of the activatory brain system, a decrease in the inhibitory control of subcortical structures by neocortical formations, and activation of limbic system and hypothalamic structures. Switching of the integrative regulatory mechanisms from the cortico-thalamic level to the limbic-diencephalic level may allow release of the energy-consuming nonspecific components of hypoxic stress and more stable regulation of physiological parameters by the major vital systems in conditions of increasing oxygen deficit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. K. Anokhin, Biology and Neurophysiology of the Conditioned Reflex [in Russian], Meditsina, Moscow (1968).

    Google Scholar 

  2. A. I. Barvinok and V. P. Rozhkov, “Characteristics of the intercentral coordination of cortical electrical processes during mental activity,” Fiziol. Cheloveka, 18, No. 3, 5–16 (1992).

    PubMed  CAS  Google Scholar 

  3. S. S. Bekshaev, Computer Program: Three-Dimensional Localization of Brain Electrical Sources Giving Rise to the Temporospatial Profile of the Electroencephalogram (3DLocEEG) [in Russian], State Registration No. 2002611116, 02.07.2002.

  4. N. A. Bernshtein, Handbook for the Physiology of Movement and the Physiology of Activity [in Russian], Meditsina, Moscow (1966).

    Google Scholar 

  5. A. M. Gurvich, Electrical Activity of the Dying and Reviving Brain [in Russian], Meditsina, Leningrad (1966).

    Google Scholar 

  6. P. Duus, Topical Diagnosis in Neurology [Russian translation], ITsP Vazar-Ferro (1996).

  7. A. M. Zimkina, “Electrophysiological measures of the functional sate of the human central nervous system,” in: Functional States of the Brain [in Russian], Moscow State University Press, Moscow (1975).

    Google Scholar 

  8. Yu. M. Koptelov and V. V. Gnezditskii, “Analysis of scalp potential fields and the three-dimensional localization of sources of epileptic activity in the human brain,” Zh. Nevropatol. Psikhiatr. im. S. S. Korsakova, 89, No. 6, 11–18 (1987).

    Google Scholar 

  9. L. P. Latash, “The hippocampus,” in: Clinical Neurophysiology [in Russian], “Handbooks in Physiology” series, Nauka, Leningrad (1972), pp. 116–146.

    Google Scholar 

  10. V. I. Medvedev, Adaptation [in Russian], Institute of the Human Brain, Russian Academy of Sciences, St. Petersburg (2003).

    Google Scholar 

  11. G. Magoun, The Waking Brain [Russian translation], Mir, Moscow (1965).

    Google Scholar 

  12. Yu. V. Natochin, “Architecture of physiological functions: the same basis, new boundaries,” Ros. Fiziol. Zh. im. I. M. Sechenova, 88, No. 2, 129–143 (2002).

    CAS  Google Scholar 

  13. V. S. Novikov, V. V. Goranchuk, and E. B. Shustov, The Physiology of Extreme States [in Russian], Nauka, St. Petersburg (1998).

    Google Scholar 

  14. L. A. Orbeli, “On the evolutionary principle in physiology,” in: Selected Works [in Russian], Academy of Sciences of the USSR Press, Moscow, Leningrad (1961), Vol. 1, pp. 122–132.

    Google Scholar 

  15. S. M. Osovets, D. A. Ginzburg, V. S. Gurfinkel, L. R. Zenkov, et al., “Electrical activity of the brain: mechanisms and interpretation,” Usp. Fiziol. Nauk., 141, No. 1, 103–150 (1983).

    Google Scholar 

  16. I. P. Pavlov, Complete Collection of Works, Nauka, Leningrad (1949), Vol. III.

    Google Scholar 

  17. W. Penfield and H. Jasper, Epilepsy and the Functional Anatomy of the Human Brain [Russian translation], Foreign Literature Press, Moscow (1958).

    Google Scholar 

  18. Problems in Hypoxia: Molecular, Physiological, and Medical Aspects [in Russian], L. D. Luk’yanova and I. B. Ushakov (eds.), Istoki Press, Moscow, Voronezh (2004).

  19. I. A. Sapov and V. S. Novikov, “Theoretical bases of adaptation,” Fiziol. Zh. SSSR im. I. M. Sechenova, 72, No. 1, 78–82 (1986).

    PubMed  CAS  Google Scholar 

  20. E. N. Sokolov and N. N. Danilova, “Neuronal correlates of the functional state of the brain,” in: Functional States of the Brain [in Russian], Moscow State University Press (1975), pp. 129–136.

  21. S. I. Soroko, S. S. Bekshaev, and Yu. A. Sidorov, Basic Types of Brain Self-Regulatory Mechanisms [in Russian], Nauka, Leningrad (1990).

    Google Scholar 

  22. S. I. Soroko, S. S. Bekshaev, and V. P. Rozhkov, “EEG markers of impaired systems activity in the brain during hypoxia,” Fiziol. Cheloveka, 33, No. 5, 1–15 (2007).

    Google Scholar 

  23. S. I. Soroko, E. A. Burykh, S. S. Bekshaev, and E. G. Sergeeva, “A complex multiparameter study of the systems responses of the human body to dosed hypoxia,” Fiziol. Cheloveka, 31, No. 5, 1–22 (2005).

    Google Scholar 

  24. M. N. Tsitseroshin, “Analysis of statistical interactions of oscillations in brain biopotentials in three-dimensional factor space,” Avtometriya, 6, 89–93 (1986).

    Google Scholar 

  25. A. N. Shepovalnikov and M. N. Tsitseroshin, “Spatial ordering of the functional organization of the whole brain,” Fiziol. Cheloveka, 13, No. 3, 38–51 (1987).

    Google Scholar 

  26. A. N. Shepovalnikov, M. N. Tsitseroshin, V. P. Rozhkov, E. I. Galperina, L. G. Zaitseva, and R. A. Shepoval’nikov, “Characteristics of interregional interactions of cortical fields at different stages of natural and hypnotic sleep (EEG data),” Fiziol. Cheloveka, 31, No. 2, 45–59 (2005).

    Google Scholar 

  27. V. N. Chernigovskii, “On the current position in the development of concepts of corticovisceral interactions,” Fiziol. Zh. SSSR, 55, No. 8, 904–911 (1969).

    PubMed  CAS  Google Scholar 

  28. P. Anderson and S. A. Anderson, Physiological Basis of the Alpha Rhythm, Appleton-Crofts, New York (1968).

    Google Scholar 

  29. M. D. Burton and H. Kazemi, “Neurotransmitters in central respiratory control,” Respir. Physiol., 122, No. 2–3, 111–121 (2000).

    Article  PubMed  CAS  Google Scholar 

  30. D. A. Ginsburg, E. B. Pasternak, and A. M. Gurvitch, “Correlation analysis of delta activity generated in cerebral hypoxia,” EEG Clin. Neurophysiol., 42, No. 4, 445–455 (1990).

    Article  Google Scholar 

  31. B. He, T. Musha, Y. Okamoto, S. Homma, Y. Nakajama, and T. Sato, “Electric dipole tracing in the brain by means of the boundary elements method and its accuracy,” IEEE Trans Biomed. Eng., BME-34, 6, 87–94 (1987).

    Google Scholar 

  32. J. H. Jackson, “Evolution and dissolution of the nervous system,” in: Selected Writings of John Hughlings Jackson, Basic Books, New York (1958), Vol. 2.

    Google Scholar 

  33. S. Lahiri and R. E. Forster, “CO2/H(+) sensing: peripheral and central chemoreception,” Int. J. Biochem. Cell. Biol., 35, No. 10, 1413–1435 (2003).

    Article  PubMed  CAS  Google Scholar 

  34. G. Lantz, E. Ryding, and I. Rosen, “Dipole reconstruction as a method for identifying patients with mesolimbic epilepsy,” Seizure, 1, 118 (1997).

    Google Scholar 

  35. F. H. Lopes da Silva, “Neural mechanisms underlying brain waves: from neural membranes to networks,” EEG Clin. Neurophysiol., 79, No. 2, 81–93 (1991).

    Article  CAS  Google Scholar 

  36. C. Michiels, “Physiological and pathological responses to hypoxia,” Amer. J. Pathol., 164, 1875–1882 (2004).

    CAS  Google Scholar 

  37. E. Niedermayer and F. H. Lopes da Silva (eds.), Electroencephalography: Basic Principles, Clinical Applications and Related Fields, Baltimore, Urban and Swarzenberg, Munich (1993).

    Google Scholar 

  38. A. Routtenberg, The two-arousal hypothesis: reticular formation and limbic system,” Psychol. Rev., 76, 51–65 (1968).

    Article  Google Scholar 

  39. M. Sherg, “Fundamentals of dipole source potential analysis,” in: Auditory Evoked Magnetic Fields and Potentials, F. Grandori, M. Hoke, and G. L. Romani (eds.), Adv. Audiology, 6, 40–69, Karger, Basel (1990).

    Google Scholar 

  40. M. Steriade, P. Gloor, R. R. Llinas, F. H. Lopes da Silva, and M.-M. Mesulam, “Basic mechanisms of cerebral rhythmic activities,” EEG Clin. Neurophysiol., 76, No. 4, 481–508 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Rozhkov.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 94, No. 5, pp. 481–501, May, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozhkov, V.P., Soroko, S.I., Trifonov, M.I. et al. Cortical-Subcortical Interactions and the Regulation of the Functional State of the Brain in Acute Hypoxia in Humans. Neurosci Behav Physi 39, 417–428 (2009). https://doi.org/10.1007/s11055-009-9160-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-009-9160-4

Key Words

Navigation