Skip to main content
Log in

Applicability of Kinetic Models for In Situ Combustion Processes with Different Oil Types

  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The in situ combustion (ISC) process is of interest as an enhanced oil recovery method because it is an alternative to traditional steam-based processes for heavy oil and bitumen recovery. ISC is a technique applicable outside the window of reservoir conditions deemed appropriate for steam injection (such as deeper and thinner reservoirs). The process involves complex chemical reactions and physical recovery mechanisms, and predicting the likelihood of successful ISC in field applications remains challenging. This paper describes a numerical investigation of the capability of different ISC kinetic models to predict the combustion behaviors of different types of oils (light oil, heavy oil, and bitumen). Three kinetic models (of Coats, Crookston, and Belgrave) were selected from literature and compared using data from four published combustion-tube experiments. The comparison procedure is as follows: (1) validate the numerical modeling of each kinetic model by matching the selected experimental results or duplicating the numerical results found in published literature; (2) adjust fluid viscosities and densities to match the fluid properties of each experiment;and (3) use each validated kinetic model to predict the performance of the other experiments without further tuning the kinetic parameters. The knowledge derived from the experiments provides guidance for choosing the appropriate kinetic model when no other data are available and for the preliminary design and screening study of a potential ISC project.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Abbreviations

A r :

Rate constant, day−1 bar−1 or day−1 psi−1

BDE :

Constants for KVCR (ECLIPSE keyword) input

C i D i E i :

Constants for k-value expression

C p1 :

Heat capacity coefficient, kJ/kg K or btu/lbm F

C p2 :

Heat capacity coefficient, kJ/kg K2 or btu/lbm F2

\( C_{{p_{a} }} \), \( C_{{p_{b} }} \), \( C_{{p_{c} }} \), \( C_{{p_{d} }} \) :

Polynomial coefficients for Belgrave’s original equation of heat capacities

E r :

Activation energy, cal/mol, kJ/kmol, or btu/lbm mol

H cgas :

Gas heat capacity, kJ/kg, or btu/lbm, in appendix

H cvap :

Heat of vaporization at standard temperature

H r1 :

Heat of reaction, btu/lbm, kJ/kmol, or btu/lbm mol

k i :

k-values, in Appendix

k rgro :

Relative permeability to gas at residual liquid saturation

k roiw :

Relative permeability to oil at irreducible water saturation

k rwro :

Relative permeability to water at residual oil saturation

k rw :

Water relative permeability

k row :

Relative permeability to oil in an oil/water system

k rog :

Relative permeability to gas in a gas/oil system with connate water

k rg :

Relative permeability to gas

k l :

Thermal conductivity of liquid

k w :

Thermal conductivity of water

k o :

Thermal conductivity of oil

k r :

Thermal conductivity of rock

n w :

Exponent on water saturation for k rw

n ow :

Exponent on oil saturation for k row

n g :

Exponent on gas saturation for k rg

n og :

Exponent on oil saturation for k rog

P :

Pressure for k-values calculation in appendix

P cgo :

Gas/oil capillary pressure, P g  − P o

P cwo :

Water/oil capillary pressure, P o  − P w

P g :

Gas pressure

P o :

Oil pressure

P w :

Water pressure

\( P_{{O_{2} }} \) :

Oxygen partial pressure

P c :

Critical pressure, kPa, Pa, or psi

r :

Reaction rate

R :

Universal gas constant

S gc :

Critical gas saturation

S gr :

Residual gas saturation

S orw :

Residual oil saturation to water

S w :

Water saturation

S wi :

Connate water saturation

S wir :

Irreducible water saturation

S org :

Residual oil saturation to gas

T :

Temperature

T c :

Critical temperature, K, R

T st :

Standard temperature, K, °F

φ :

Porosity

μ bitumen :

Viscosity of bitumen

References

  • Adegbesan, K. O., Donnelly, J. K., Moore, R. G., & Bennion, D. W. (1987). Low-temperature oxidation kinetic parameters for in situ combustion numerical simulation. SPE Reservoir Engineering, 2(4), 573–582.

    Article  Google Scholar 

  • Akin, S., Bagci, S., & Kok, M. V. (2002). Experimental and numerical analysis of dry forward combustion with diverse well configuration. Energy & Fuels, 16, 892–903.

    Article  Google Scholar 

  • Belgrave, J. D. M. (1987). An experimental and numerical investigation of in-situ combustion tube tests. Ph.D. Thesis, University of Calgary, Alberta.

  • Belgrave, J. D. M., Bennion, D. W., Moore, R. G., Gie, D. N., & Ursenbach, M. G. (1986). Burnt report of combustion tube tests, A.O.S.T.R.A. No. 50—Athabasca No. 45. Department of Chemical and Petroleum Engineering, University of Calgary.

  • Belgrave, J. D. M., Moore, R. G., Ursenbach, M. G., & Bennion, D. W. (1990). A comprehensive approach to in-situ combustion modeling. SPE Advanced Technology Series, 1(1), 98–107.

    Article  Google Scholar 

  • Coates, R., Lorimer, S., & Ivory, J. (1995). Experimental and numerical simulations of a novel top down in-situ combustion process. Paper SPE 30295, presented at the international heavy oil symposium, Calgary, Alberta, Canada, 19–21 June.

  • Coats, K. H. (1980). In-situ combustion model. SPE Journal, 20(6), 533–554.

    Article  Google Scholar 

  • Coats, K. H. (1983). Some observations on field—Scale simulation of the in-situ combustion process. Paper SPE 12247 presented at the Reservoir Simulation Symposium, San Francisco, USA, 15–18 Nov.

  • Crookston, R. B. (1979). A numerical simulation model for thermal recovery processes. Paper SPE 6724 presented at SPE-AIME 52nd Annual Fall Technical Conference and Exhibition, Denver, 9–12 Oct.

  • ECLIPSE Reference Manual and Technical Description, (2012.1).

  • Grabowski, J. W., Rubin, B., & Harding, T. G. (1981). A preliminary numerical simulation study of in-situ combustion in a cold lake oil sands reservoir. Journal of Canadian Petroleum Technology, 2(20), 81-02-06.

  • Gutierrez, D., Moore, R. G., Ursenbach, M. G., & Mehta, S. A. (2012). The ABCs of in-situ combustion simulations: From laboratory experiments to field scale. Journal of Canadian Petroleum Technology, 51(4), 256–267.

    Article  Google Scholar 

  • Hayashitani, M., Bennion, D. W., Donnelly, J. K., & Moore, R. G. (1977). Thermal cracking of athabasca bitumen. In AGARD conference proceedings (pp. 233–247).

  • Jia, N., Moore, R. G., Mehta, S. A., & Ursenbach, M. G. (2006). Kinetic modeling of thermal cracking and low temperature oxidation reactions. Journal of Canadian Petroleum Technology, 45(9), 07-02-07.

  • Kalogerakis, N., & Luus, R. (1983). Improvement of Gauss-Newton method for parameter estimation through the use of information index. Industrial and Engineering Chemistry Fundamentals, 22, 436–445.

    Article  Google Scholar 

  • Kovscek, A. R., Castanier, L. M., & Gerritsen, M. G. (2013). Improved predictability of in-situ combustion enhanced oil recovery. SPE Reservoir Evaluation and Engineering, May, pp. 172–182.

  • Le Thiez, P. A., & Lemonnier, P. A. (1990). An in-situ combustion reservoir simulator with a new representation of chemical reactions. SPE Reservoir Evaluation & Engineering, 5(3), 285–292. SPE 17416.

  • Nicholls, J. H., & Luhning, R. W. (1977). In D. D. Redford & A. G.Winestock (Eds.), Heavy oil sand in-situ pilot plants in Alberta (past and present), CIM Special Volume 17.

  • Onyekonwu, M. O., Pande, K., Ramey, H. J., & Brigham W. E. (1986). Experimental and simulation studies of laboratory in-situ combustion recovery. SPE paper 15090 presented at the 56th California Regional Meeting of the Society of Petroleum Engineers, Oakland, C.A., 2–4 April.

  • Parrish, D. R., & Craig, F. F. (1969). Laboratory study of a combination of forward combustion and waterflooding—The COFCAW process. Journal of Petroleum Technology, 21(6), 753–761.

    Article  Google Scholar 

  • Sequera, B., Moore, R. G., Mehta, S. A., & Ursenbach, M. G. (2010). Numerical simulation of in-situ combustion experiments operated under low temperature conditions. Journal of Canadian Petroleum Technology, 49(1), 06-01-03.

  • Smith, F. W., & Perkins, T. K. (1973). Experimental and numerical studies of the wet combustion recovery process. Journal of Canadian Petroleum Technology, 12(3), 07-03-05.

  • Thomas, F. B., Moore, R. G., & Bennion, D. W. (1985). Kinetic parameters for the high-temperature oxidation of in-situ combustion coke. Journal of Canadian Petroleum Technology, 24(6), 60–67, 85-06-05.

  • Tingas, J., Greaves, M., & Young, T. S. (1996). Field-scale simulation study of in-situ combustion in high-pressure light-oil reservoirs. Paper SPE 35395 presented at the SPE/DOE improved oil recovery symposium, Tulsa, Oklahoma, 21–24 April.

  • Turta, A. T., Chattopadhyay, S. K., Bhattacharya, R. N., Condrachi, A., & Hanson, W. (2007). Current status of commercial in situ combustion projects worldwide. Journal of Canadian Petroleum Technology, 46(11), 8–14.

    Article  Google Scholar 

  • Wiehe, I. A. (1993). A phase-separation kinetic model for coke formation. Industrial and Engineering Chemistry Research, 32(11), 2447–2454.

    Article  Google Scholar 

  • Yang, X., & Gates, I. D. (2009). Combustion kinetics of Athabasca bitumen from 1D combustion tube experiments. Natural Resources Research, 18(3), 193–211.

Download references

Acknowledgments

The authors would like to acknowledge Schlumberger for permission to present and publish the work. Also, we would like to thank the anonymous reviewers for providing their valuable comments in reviewing our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Jia.

Appendix

Appendix

Both metric and field units are provided for most of the data for convenience. Values given as “literature” are derived from the literature review.

Coats’ Model

See Tables 7, 8, 9, 10, 11, 12, 13, and 14.

Table 7 Kinetic parameters for Coats’ model
Table 8 MW and critical properties for Coats’ model
Table 9 Parameters of KVCR of Coats’ model
Table 10 Heat capacity values of Coat’s model
Table 11 Heat of vaporization values of Coat’s model
Table 12 Viscosity correlation (T: °R)
Table 13 Density Values for Coats’ Model
Table 14 Liquid compressibility and thermal expansion coefficient for Coats’ model

Crookston’s Model

See Tables 15, 16, 17, 18, 19, 20, 21, and 22.

Table 15 Kinetic Parameters for Crookston’s model
Table 16 MW and critical properties for Crookston’s model
Table 17 Parameters of KVCR of Crookston’s model
Table 18 Heat capacity values of Crookston’s model
Table 19 Heat of vaporization values of Crookston’s model
Table 20 Viscosity correlation (T: °R)
Table 21 Density values for Crookston’s model
Table 22 Liquid compressibility and thermal expansion coefficient for Crookston’s model

Belgrave’s Model

See Tables 23, 24, 25, 26, 27, 28, 29, 30, and 31.

Table 23 Kinetic parameters for Belgrave’s model
Table 24 Properties of components of Belgrave’s model
Table 25 Parameters of k-values for Maltenes of Belgrave’s model
Table 26 Parameters of KVCR for maltenes of Belgrave’s model
Table 27 Heat capacity values for Belgrave’s model
Table 28 HEATVAPS values for Belgrave’s model
Table 29 Thermal conductivity values for Belgrave’s model
Table 30 Density values for Belgrave’s model
Table 31 Liquid compressibility and thermal expansion coefficient for Belgrave’s model

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, N., Law, D.HS., Naccache, P. et al. Applicability of Kinetic Models for In Situ Combustion Processes with Different Oil Types. Nat Resour Res 26, 37–55 (2017). https://doi.org/10.1007/s11053-016-9299-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-016-9299-y

Keywords

Navigation