Skip to main content

Advertisement

Log in

Application of Discriminant Analysis and Support Vector Machine in Mapping Gold Potential Areas for Further Drilling in the Sari-Gunay Gold Deposit, NW Iran

  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

In this contribution, we used discriminant analysis (DA) and support vector machine (SVM) to model subsurface gold mineralization by using a combination of the surface soil geochemical anomalies and earlier bore data for further drilling at the Sari-Gunay gold deposit, NW Iran. Seventy percent of the data were used as the training data and the remaining 30 % were used as the testing data. Sum of the block grades, obtained by kriging, above the cutoff grade (0.5 g/t) was multiplied by the thickness of the blocks and used as productivity index (PI). Then, the PI variable was classified into three classes of background, medium, and high by using fractal method. Four classification functions of SVM and DA methods were calculated by the training soil geochemical data. Also, by using all the geochemical data and classification functions, the general extension of the gold mineralized zones was predicted. The mineral prediction models at the Sari-Gunay hill were used to locate high and moderate potential areas for further infill systematic and reconnaissance drilling, respectively. These models at Agh-Dagh hill and the area between Sari-Gunay and Agh-Dagh hills were used to define the moderate and high potential areas for further reconnaissance drilling. The results showed that the nu-SVM method with 73.8 % accuracy and c-SVM with 72.3 % accuracy worked better than DA methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abbaszadeh, M., Hezarkhani, A., & Soltani-Mohammad, S. (2013). An SVM-based machine learning method for the separation of alteration zones in Sungun porphyry copper deposit. Chemie der Erde: Geochemistry, 73, 545–554

    Article  Google Scholar 

  • Abedi, M., Norouzi, G. H., & Bahroudi, A. (2012). Support vector machine for multi-classification of mineral prospectivity areas. Computers & Geosciences, 46, 272–283

    Article  Google Scholar 

  • Agterberg, F. P. (1974). Automatic contouring of geological maps to detect areas for mineral exploration. Mathematical Geology, 6, 373–395

    Article  Google Scholar 

  • Al-Anazi, A., & Gates, I. D. (2010). On the capability of support vector machines to classify lithology from well logs. Natural Resources Research, 19, 125–139

    Article  Google Scholar 

  • Alavi, M. (1994). Tectonics of Zagros Orogenic belt of Iran, new data and interpretation. Tectonophysics, 229, 211–238

    Article  Google Scholar 

  • Aliyari, F., Rastad, E., & Mohajjel, M. (2012). Gold deposits in the Sanandaj-Sirjan zone: Orogenic gold deposits or intrusion-related gold systems. Resource Geology, 62, 296–315

    Article  Google Scholar 

  • Asadi, H. H., Kianpouryan, S., Lu, Y., & McCuaig, T. C. (2014). Exploratory data analysis and C-A fractal model applied in mapping multi-element soil anomalies for drilling: A case study from Sari-Gunay epithermal gold deposit, NW Iran. Journal of Geochemical Exploration, 145, 233–245

    Article  Google Scholar 

  • Auria, L., & Moro, R. A. (2008). Support vector machines (SVM) as a technique for solvency analysis. Discussion Papers No. 811 of DIW, Berlin, pp. 1–16

  • Bagheri, S., & Stampfli, G. M. (2008). The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: New geological data, relationships and tectonic implications. Tectonophysics, 451, 123–155

    Article  Google Scholar 

  • Bartram, J. (2005). Pre-feasibility compilation of reports and memo. Rio-Tinto Mining and Exploration 421 Ltd Technical Report, p. 106

  • Belkhiri, L., & Mouni, L. (2014). Geochemical characterization of surface water and groundwater in Soummam Basin, Algeria. Natural Resources Research, 23, 393–407

    Article  Google Scholar 

  • Ben-Hur, A., & Weston, J. (2010). A user’s guide to support vector machines, Chap. 13. In O. Carugo & F. Eisenhaber (Eds.), Data mining techniques for the life sciences (pp. 223–239). Totowa, NJ: Humana Press

    Chapter  Google Scholar 

  • Bökeoğlu Çokluk, Ö., & Büyüköztürk, Ş. (2008). Discriminant function analysis: Concept and application. Eğitim Araştırmaları Dergisi, 33, 73–92

    Google Scholar 

  • Bonham-Carter, G. F., Agterberg, F. P., & Wright, D. F. (1988). Integration of geological datasets for gold exploration in Nova Scotia. Photogrammetric Engineering and Remote Sensing, 54, 1585–1592

    Google Scholar 

  • Bonham-Carter, G. F., & Chung, C. F. (1983). Integration of mineral resource data for Kasmere Lake area, Northwest Manitoba, with emphasis on uranium. Mathematical Geology, 15, 25–45

    Article  Google Scholar 

  • Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, 121–167

    Article  Google Scholar 

  • Byvatov, E., Fechner, U., Sadowski, J., & Schneider, G. (2003). Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. Journal of Chemical Information and Computer Sciences, 43, 1882–1889

    Article  Google Scholar 

  • Carranza, E. J. M. (2009). Geochemical anomaly and mineral prospectivity mapping in GIS. In M. Hale (Ed.), Handbook of exploration and environmental geochemistry (Vol. 11). Amsterdam: Elsevier

    Google Scholar 

  • Chatterjee, S., & Bandopadhyay, S. (2011). Goodness Bay Platinum resource estimation using least squares support vector regression with selection of input space dimension and hyperparameters. Natural Resources Research, 20, 117–129

    Article  Google Scholar 

  • Chung, C. F. (1977). An application of discriminant analysis for the evaluation of mineral potential. In: Ramani, R. V. (Ed.), Application of Computer Methods in the Mineral Industry, Proceedings of the 14th APCOM Symposium, Society of Mining Engineers of American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, pp. 299–311

  • Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2002). Applied multiple regression/correlation analysis for the behavioural sciences (3rd ed.). New York: Routledge

    Google Scholar 

  • Cristianini, N., & Taylor, J. S. (2000). An introduction to support vector machines and other Kernel-based learning methods. Cambridge: Cambridge University Press

    Book  Google Scholar 

  • Croux, C., & Joossens, K. (2005). Influence of observations on the misclassification probability in quadratic discriminant analysis. Journal of Multivariate Analysis, 96, 384–403

    Article  Google Scholar 

  • Dargahi, S., Arvin, M., Pan, Y., & Babaei, A. (2010). Petrogenesis of post-collisional A-type granitoids from the Urumieh-Dokhtar magmatic assemblage, Southwestern Kerman, Iran: Constraints on the Arabian-Eurasian continental collision. Lithos, 115, 190–204

    Article  Google Scholar 

  • Davis, J. C. (2002). Statistics and data analysis in geology (3rd ed.). New York: Wiley

    Google Scholar 

  • Deng, J., Wang, Q., Wan, L., Yang, L., Gong, Q., Zhao, J., & Liu, H. (2009). Self-similar fractal analysis of gold mineralization of Dayingezhuang disseminated-veinlet deposit in Jiaodong gold province, China. Journal of Geochemical Exploration, 102, 95–102

    Article  Google Scholar 

  • Divi, S. R., Thorpe, R. I., & Frankli, J. M. (1979). Application of discriminant analysis to evaluate compositional controls of stratiform massive sulfide deposits in Canada. Mathematical Geology, 11, 391–406

    Article  Google Scholar 

  • Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification (2nd ed.). New York: Wiley

    Google Scholar 

  • Fedikow, M. A. F., Parbery, D., & Ferreira, K. J. (1991). Geochemical target selection along the Agassiz Metallotect utilizing stepwise discriminant function analysis. Economic Geology, 86, 558–559

    Article  Google Scholar 

  • Friedman, J. (1989). Regularized discriminant analysis. Journal of America Statistical Association, 84, 165–175

    Article  Google Scholar 

  • George, C., & Fernandez, J. (2002). Discriminant analysis, a powerful classification technique in data mining. Statistics and data analysis pp. 244–247

  • Harris, D. P. (1965). Multivariate statistical analysis—a decision tool for mineral exploration. In J. C. Dotson & W. C. Peters (Eds.), Symposium on computers and computer applications in mining and exploration (pp. C1–C35). Ariz: College of Mines, University of Arizona, Tucson

    Google Scholar 

  • Harris, D. P., & Pan, G. (1999). Mineral favorability mapping: A comparison of artificial neural networks, logistic regression, and discriminant analysis. Natural Resources Research, 8, 93–109

    Article  Google Scholar 

  • Harris, D. P., Zurcher, L., Stanley, M., Marlow, J., & Pan, G. (2003). A comparative analysis of favorability mappings by weights of evidence, probabilistic neural networks, discriminant analysis, and logistic regression. Natural Resources Research, 12, 241–255

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning. Berlin: Springer

    Book  Google Scholar 

  • Hu, Y., & Yu, D. (2011). The comparison of five discriminant methods. In International Conference on Management and Service Science (MASS), pp. 1–4

  • Kavzoglu, T., & Colkesen, I. (2009). A kernel functions analysis for support vector machines for land cover classification. International Journal of Applied Earth Observation and Geoinformation, 11, 352–359

    Article  Google Scholar 

  • Kouhestani, H., Ghaderi, M., Zaw, K., Meffre, S., & Hashem Emami, M. (2012). Geological setting and timing of the Chah Zard breccia-hosted epithermal gold–silver deposit in the Tethyan belt of Iran. Mineralium Deposita, 47, 425–440

    Article  Google Scholar 

  • Li, J. (2005). Multiattributes pattern recognition for reservoir prediction. CSEG National Convention

  • Mandelbrot, B. B. (1983). The fractal geometry of nature. San Francisco: Freeman

    Google Scholar 

  • McKinley, J. M., Roberson, S., Cooper, M., & Tolosana-Delgado, R. (2014). Discriminant analysis of palaeogene Basalt Lavas, Northern Ireland, Using Soil Geochemistry. In Mathematics of Planet Earth. Lecture Notes in Earth System Sciences, p. 103–106

  • McLachlan, G. J. (1992). Discriminant analysis and statistical pattern recognition. New York: Wiley

    Book  Google Scholar 

  • Mirnejad, H., Simonetti, A., & Molasalehi, F. (2011). Pb isotopic compositions of some Zn–Pb deposits and occurrences from Urumieh-Dokhtar and Sanandaj-Sirjan zones in Iran. Ore Geology Reviews, 39, 181–187

    Article  Google Scholar 

  • Moon, C. J., Whateley, M. K. G., & Evans, A. M. (2006). Introduction to mineral exploration. Oxford: Blackwell Publishing

    Google Scholar 

  • Moosavi, S. A., Heidari, S. M., Rastad, E., Esfahaninejad, M., & Rashidnejad Omran, N. (2008). A brief review of mineral deposit types and geodynamic settings related to Neotethys in Iran. Geosciences, 17, 132–142

    Google Scholar 

  • Pan, G. C., & Harris, D. P. (2000). Information synthesis for mineral exploration. New York: Oxford University Press Inc

    Google Scholar 

  • Pirajno, F. (2009). Hydrothermal processes and mineral systems. Australia: Springer Publication

    Book  Google Scholar 

  • Prelat, A. E. (1977). Discriminant analysis as a method of predicting mineral occurrence potentials in central Norway. Mathematical Geology, 9, 343–367

    Article  Google Scholar 

  • Richards, J. P., Wilkinson, D., & Ullrich, T. (2006). Geology of the Sari-Gunay epithermal gold deposit northwest Iran. Economic Geology, 101, 1455–1496

    Article  Google Scholar 

  • Robert, F., Brommecker, R., Bourne, B. T., Dobak, P. J., McEwan, C. J., Rowe, R. R., & Zhou, X. (2007). Models and exploration methods for major gold deposit types. In B. Milkereit (Ed.) Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, pp. 691–711

  • Roberts, S., Sanderson, D. J., & Gumiel, P. (1998). Fractal analysis of Sn–W mineralization from central Iberia, insights into the role of fracture connectivity in the formation of an ore deposit. Economic Geology, 93, 360–365

    Article  Google Scholar 

  • Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. (2014). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews. doi:10.1016/j.oregeorev.2015.01.001

    Google Scholar 

  • Rose, A. W. (1972). Favorability for Cornwall-type magnetite deposits in Pennsylvania using geological, geochemical and geophysical data in a discriminant function. Journal of Geochemical Exploration, 1, 181–194

    Article  Google Scholar 

  • Roshani, P., Mokhtari, A. R., & Tabatabaei, S. H. (2013). Objective based geochemical anomaly detection: Application of discriminant function analysis in anomaly delineation in the Kuh Panj porphyry Cu mineralization (Iran). Journal of Geochemical Exploration, 130, 65–73

    Article  Google Scholar 

  • Sanderson, D. J., Roberts, S., & Gumiel, P. (1994). A fractal relationship between vein thickness and gold grade in drill core from La Codosera, Spain. Economic Geology, 89, 168–173

    Article  Google Scholar 

  • Savu-Krohn, C., Rantitsch, G., Auer, P., Melcher, F., & Graupner, T. (2011). Geochemical fingerprinting of Coltan ores by machine learning on uneven datasets. Natural Resources Research, 20, 177–191

    Article  Google Scholar 

  • Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge: Cambridge University Press

    Book  Google Scholar 

  • Siddiqui, F. I., & Syed Osman, S. B. A. B. (2013). Simple and multiple regression models for relationship between electrical resistivity and various soil properties for soil characterization. Environmental Earth Sciences, 70, 259–267

    Article  Google Scholar 

  • Solovov, A. P. (1985). Chemical prospectivity for mineral deposits, Amazon

  • Srivastava, M. S. (2002). Methods of multivariate statistics. New York: Wiley

    Google Scholar 

  • Stampfli, G. M., & Borel, G. D. (2004). The TRANSMED transects in space and time: Constraints on the paleotectonic evolution of the Mediterranean domain. In W. Cavazza, F. Roure, W. Spakman, G. M. Stampfli, & P. Ziegler (Eds.), The TRANSMED atlas: the mediterranean region from crust to mantle (pp. 53–80). Berlin: Springer Verlag

    Chapter  Google Scholar 

  • Stőcklin, J. (1968). Structural history and tectonics of Iran: A review. The American Association of Petroleum Geologists Bulletin, 52, 1229–1258

    Google Scholar 

  • Tabachnick, B. G., & Fidell, L. S. (2012). Using multivariate statistics (6th ed.). Boston: Pearson Publisher

    Google Scholar 

  • Tahmasebi, P., Hezarkhani, A., & Mortazavi, M. (2010). Application of discriminant analysis for alteration separation; Sungun Copper Deposit, East Azerbaijan, Iran. Australian Journal of Basic and Applied Sciences, 6, 564–576

    Google Scholar 

  • Theodoridis, S., & Koutroumbas, K. (2009). Pattern recognition (4th ed.). Amsterdam: Elsevier

    Google Scholar 

  • Thompson, M., & Howarth, R. J. (1976). Duplicate analysis in geochemical practice. Part 1: Theoretical approach and estimation of analytical reproducibility. Analyst, 101, 690–698

    Article  Google Scholar 

  • Tibljas, D., Loparic, V., & Belak, M. (2002). Discriminant function analysis of Miocene volcaniclastic rocks from North-Western based geochemical data. Geologia Croatica, 55, 39–44

    Google Scholar 

  • Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10, 988–999

    Article  Google Scholar 

  • Varadanchari, C., & Mukherjee, G. (2004). Discriminant analysis of clay mineral composition. Journal of Clay and Clay Minerals, 52, 311–320

    Article  Google Scholar 

  • Venkataraman, G., Babu Madhavan, B., Ratha, D. S., Antony, J. P., Goyal, R. S., Banglani, S., & Sinha Roy, S. (2000). Spatial modeling for base-metal mineral exploration through integration of geological data sets. Natural Resources Research, 9, 27–42

    Article  Google Scholar 

  • Wang, Q., Deng, J., Liu, H., Yang, L., Wan, L., & Zhang, R. (2010). Fractal models for ore reserve estimation. Ore Geology Reviews, 37, 2–14

    Article  Google Scholar 

  • Whitehead, R. E. S., & Govett, G. J. S. (1974). Exploration rock geochemistry—detection of trace element halos, Heath Steele Mines (N.B., Canada), by discriminant analysis. Journal of Geochemical Exploration, 3, 371–386

    Article  Google Scholar 

  • Wilkinson, L. D. (2005). Geology and mineralization of the Sari-Gunay gold deposits. Kordestan province Iran, Rio-Tinto Ltd Technical Report

  • Wu, C., Lv, X., Cao, X., Mo, Y., & Chen, C. (2010). Application of support vector regression to predict metallogenic favorability degree. International Journal of the Physical Sciences, 5, 2523–2527

    Google Scholar 

  • Wu, W., Mallet, Y., Walczak’va, B., Penninckx, W., Massarta, D. L., Heuerdingb, S., & Ernib, F. (1996). Comparison of regularized discriminant analysis, linear discriminant analysis and quadratic discriminant analysis, applied to NIR data. Analytica Chimica Acta, 329, 257–265

    Article  Google Scholar 

  • Yang, Q., Li, X., & Shi, X. (2008). Cellular automata for simulating land use changes based on support vector machines. Computers & Geosciences, 34, 592–602

    Article  Google Scholar 

  • Yu, H., & Kim, S. (2012). SVM tutorial—classification, regression and ranking. Handbook of natural computing (pp. 479–506). Berlin: Springer

    Book  Google Scholar 

  • Yu, L., Porwal, A., Holden, E. J., & Dentith, M. C. (2012). Towards automatic lithological classification from remote sensing data using support vector machines. Computers & Geosciences, 45, 229–239

    Article  Google Scholar 

  • Zuo, R., & Carranza, E. J. M. (2011). Support vector machine: A tool for mapping mineral prospectivity. Computers & Geosciences, 37, 1967–1975

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Zar Kuh mining company, the owner of the Sari-Gunay gold deposit, for providing the geochemical data. We acknowledge Prof. Renguang Zuo, Associate Editor of NRR, for expert handling of our manuscript and we thank two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Hassan Tabatabaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geranian, H., Tabatabaei, S.H., Asadi, H.H. et al. Application of Discriminant Analysis and Support Vector Machine in Mapping Gold Potential Areas for Further Drilling in the Sari-Gunay Gold Deposit, NW Iran. Nat Resour Res 25, 145–159 (2016). https://doi.org/10.1007/s11053-015-9271-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-015-9271-2

Keywords

Navigation