Skip to main content
Log in

Preparation and biodistribution of 59Fe-radiolabelled iron oxide nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report on the 59Fe radiolabelling of iron oxide nanoparticle cores through post-synthetic isotope exchange (59Fe-IONPex) and precursor labelling (59Fe-IONPpre). Scanning electron microscopy and dynamic light scattering measurements showed no impact of radiolabelling on nanoparticle size or morphology. While incorporation efficiencies of these methods are comparable—83 and 90% for precursor labelling and post-synthetic isotope exchange, respectively—59Fe-IONPpre exhibited much higher radiochemical stability in citrated human plasma. Quantitative ex vivo biodistribution study of 59Fe-IONPpre coated with triethylene glycol was performed in Wistar rats. Following the intravenous administration, high 59Fe concentration was observed in the lung and the organs of the reticuloendothelial system such as the liver, the spleen and the femur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Balasubramaniam S, Kayandan S, Lin Y-N et al (2014) Toward design of magnetic nanoparticle clusters stabilized by biocompatible diblock copolymers for T 2-weighted MRI contrast. Langmuir 30:1580–1587. doi:10.1021/la403591z

    Article  Google Scholar 

  • Bargheer D, Giemsa A, Freund B et al (2015b) The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in mice. Beilstein J Nanotechnol 6:111–123. doi:10.3762/bjnano.6.11

    Article  Google Scholar 

  • Bargheer D, Nielsen J, Gébel G et al (2015a) The fate of a designed protein corona on nanoparticles in vitro and in vivo. Beilstein J Nanotechnol 6:36–46. doi:10.3762/bjnano.6.5

    Article  Google Scholar 

  • Bass LA, Wang M, Welch MJ, Anderson CJ (2000) In vivo transchelation of copper-64 from TETA-octreotide to superoxide dismutase in rat liver. Bioconjug Chem 11:527–532. doi:10.1021/bc990167l

    Article  Google Scholar 

  • Bomati-Miguel O, Miguel-Sancho N, Abasolo I et al (2014) Ex vivo assessment of polyol coated-iron oxide nanoparticles for MRI diagnosis applications: toxicological and MRI contrast enhancement effects. J Nanopart Res. doi:10.1007/s11051-014-2292-7

    Google Scholar 

  • Boros E, Bowen AM, Josephson L et al (2015) Chelate-free metal ion binding and heat-induced radiolabeling of iron oxide nanoparticles. Chem Sci 6:225–236. doi:10.1039/C4SC02778G

    Article  Google Scholar 

  • Chakravarty R, Valdovinos HF, Chen F et al (2014) Intrinsically germanium-69-labeled iron oxide nanoparticles: synthesis and in vivo dual-modality PET/MR imaging. Adv Mater 26:5119–5123. doi:10.1002/adma.201401372

    Article  Google Scholar 

  • Chen F, Ellison PA, Lewis CM et al (2013) Chelator-free synthesis of a dual-modality PET/MRI agent. Angew Chem Int Ed 52:13319–13323. doi:10.1002/anie.201306306

    Article  Google Scholar 

  • Ciofani G, Danti S, D’Alessandro D et al (2010) Assessing cytotoxicity of boron nitride nanotubes: interference with the MTT assay. Biochem Biophys Res Commun 394:405–411. doi:10.1016/j.bbrc.2010.03.035

    Article  Google Scholar 

  • Freund B, Tromsdorf UI, Bruns OT et al (2012) A simple and widely applicable method to 59 Fe-radiolabel monodisperse superparamagnetic iron oxide nanoparticles for in vivo quantification studies. ACS Nano 6:7318–7325. doi:10.1021/nn3024267

    Article  Google Scholar 

  • Glaus C, Rossin R, Welch MJ, Bao G (2010) In vivo evaluation of 64 Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent. Bioconjug Chem 21:715–722. doi:10.1021/bc900511j

    Article  Google Scholar 

  • Hoffman D, Sun M, Yang L et al (2014) Intrinsically radiolabelled [59Fe]-SPIONs for dual MRI/radionuclide detection. Am J Nucl Med Mol Imaging 4:548–560

    Google Scholar 

  • Huang G, Chen H, Dong Y et al (2013) Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics 3:116–126. doi:10.7150/thno.5411

    Article  Google Scholar 

  • Jin S-M, Oh S-H, Oh BJ et al (2015) Feasibility of islet magnetic resonance imaging using ferumoxytol in intraportal islet transplantation. Biomaterials 52:272–280. doi:10.1016/j.biomaterials.2015.02.055

    Article  Google Scholar 

  • Jung CSL, Heine M, Freund B et al (2016) Quantitative activity measurements of brown adipose tissue at 7 T magnetic resonance imaging after application of triglyceride-rich lipoprotein 59Fe-superparamagnetic iron oxide nanoparticle: intravenous versus intraperitoneal approach. Investig Radiol 51:194–202. doi:10.1097/RLI.0000000000000235

    Article  Google Scholar 

  • Kaittanis C, Shaffer TM, Ogirala A et al (2014) Environment-responsive nanophores for therapy and treatment monitoring via molecular MRI quenching. Nat Commun. doi:10.1038/ncomms4384

    Google Scholar 

  • Larsen BA, Haag MA, Serkova NJ et al (2008) Controlled aggregation of superparamagnetic iron oxide nanoparticles for the development of molecular magnetic resonance imaging probes. Nanotechnology 19:265102. doi:10.1088/0957-4484/19/26/265102

    Article  Google Scholar 

  • Lartigue L, Alloyeau D, Kolosnjaj-Tabi J et al (2013) Biodegradation of iron oxide nanocubes: high-resolution in situ monitoring. ACS Nano 7:3939–3952. doi:10.1021/nn305719y

    Article  Google Scholar 

  • Maity D, Kale SN, Kaul-Ghanekar R et al (2009) Studies of magnetite nanoparticles synthesized by thermal decomposition of iron(III) acetylacetonate in tri(ethylene glycol). J Magn Magn Mater 321:3093–3098. doi:10.1016/j.jmmm.2009.05.020

    Article  Google Scholar 

  • Miguel-Sancho N, Bomati-Miguel O, Roca AG et al (2012) Synthesis of magnetic nanocrystals by thermal decomposition in glycol media: effect of process variables and mechanistic study. Ind Eng Chem Res 51:8348–8357. doi:10.1021/ie3002974

    Article  Google Scholar 

  • Mouli SK, Tyler P, McDevitt JL et al (2013) Image-guided local delivery strategies enhance therapeutic nanoparticle uptake in solid tumors. ACS Nano 7:7724–7733. doi:10.1021/nn4023119

    Article  Google Scholar 

  • Nguyen T-K, Duong HTT, Selvanayagam R et al (2015) Iron oxide nanoparticle-mediated hyperthermia stimulates dispersal in bacterial biofilms and enhances antibiotic efficacy. Sci Rep 5:18385. doi:10.1038/srep18385

    Article  Google Scholar 

  • Peiris PM, Abramowski A, Mcginnity J et al (2015) Treatment of invasive brain tumors using a chain-like nanoparticle. Cancer Res 75:1356–1365. doi:10.1158/0008-5472.CAN-14-1540

    Article  Google Scholar 

  • Ramachandra Kurup Sasikala A, Thomas RG, Unnithan AR et al (2016) Multifunctional nanocarpets for cancer theranostics: remotely controlled graphene nanoheaters for thermo-chemosensitisation and magnetic resonance imaging. Sci Rep 6:20543. doi:10.1038/srep20543

    Article  Google Scholar 

  • Rizzitelli S, Giustetto P, Cutrin JC et al (2015) Sonosensitive theranostic liposomes for preclinical in vivo MRI-guided visualization of doxorubicin release stimulated by pulsed low intensity non-focused ultrasound. J Control Release 202:21–30. doi:10.1016/j.jconrel.2015.01.028

    Article  Google Scholar 

  • Roy E, Patra S, Madhuri R, Sharma PK (2016) Stimuli-responsive poly(N-isopropyl acrylamide)-co-tyrosine@gadolinium: iron oxide nanoparticle-based nanotheranostic for cancer diagnosis and treatment. Colloids Surf B Biointerfaces 142:248–258. doi:10.1016/j.colsurfb.2016.02.053

    Article  Google Scholar 

  • Sandiford L, Phinikaridou A, Protti A et al (2013) Bisphosphonate-anchored PEGylation and radiolabeling of superparamagnetic iron oxide: long-circulating nanoparticles for in vivo multimodal (T1 MRI-SPECT) imaging. ACS Nano 7:500–512. doi:10.1021/nn3046055

    Article  Google Scholar 

  • Sharma R, Xu Y, Kim SW et al (2013) Carbon-11 radiolabeling of iron-oxide nanoparticles for dual-modality PET/MR imaging. Nanoscale 5:7476. doi:10.1039/c3nr02519e

    Article  Google Scholar 

  • Soenen SJH, Himmelreich U, Nuytten N et al (2010) Intracellular nanoparticle coating stability determines nanoparticle diagnostics efficacy and cell functionality. Small 6:2136–2145. doi:10.1002/smll.201000763

    Article  Google Scholar 

  • Thorek DLJ, Ulmert D, Diop N-FM et al (2014) Non-invasive mapping of deep-tissue lymph nodes in live animals using a multimodal PET/MRI nanoparticle. Nat Commun. doi:10.1038/ncomms4097

    Google Scholar 

  • Torres Martin de Rosales R, Tavaré R, Glaria A et al (2011a) 99m Tc-bisphosphonate-iron oxide nanoparticle conjugates for dual-modality biomedical imaging. Bioconjug Chem 22:455–465. doi:10.1021/bc100483k

    Article  Google Scholar 

  • Torres Martin de Rosales R, Tavaré R, Paul RL et al (2011b) Synthesis of 64 CuII-bis(dithiocarbamatebisphosphonate) and its conjugation with superparamagnetic iron oxide nanoparticles: in vivo evaluation as dual-modality PET-MRI agent. Angew Chem Int Ed 50:5509–5513. doi:10.1002/anie.201007894

    Article  Google Scholar 

  • Wang H, Kumar R, Nagesha D et al (2015) Integrity of 111In-radiolabeled superparamagnetic iron oxide nanoparticles in the mouse. Nucl Med Biol 42:65–70. doi:10.1016/j.nucmedbio.2014.08.014

    Article  Google Scholar 

  • Wörle-Knirsch JM, Pulskamp K, Krug HF (2006) Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 6:1261–1268. doi:10.1021/nl060177c

    Article  Google Scholar 

  • Wu C, Xu Y, Yang L et al (2015) Negatively charged magnetite nanoparticle clusters as efficient MRI probes for dendritic cell labeling and in vivo tracking. Adv Funct Mater 25:3581–3591. doi:10.1002/adfm.201501031

    Article  Google Scholar 

  • Xu Y, Wu C, Zhu W et al (2015) Superparamagnetic MRI probes for in vivo tracking of dendritic cell migration with a clinical 3 T scanner. Biomaterials 58:63–71. doi:10.1016/j.biomaterials.2015.04.016

    Article  Google Scholar 

  • Yassine O, Zaher A, Li EQ et al (2016) Highly efficient thermoresponsive nanocomposite for controlled release applications. Sci Rep 6:28539. doi:10.1038/srep28539

    Article  Google Scholar 

  • Zeng J, Jia B, Qiao R et al (2014) In situ111In-doping for achieving biocompatible and non-leachable 111In-labeled Fe3O4 nanoparticles. Chem Commun 50:2170. doi:10.1039/c3cc48948e

    Article  Google Scholar 

  • Zhang Z-Q, Song S-C (2016) Thermosensitive/superparamagnetic iron oxide nanoparticle-loaded nanocapsule hydrogels for multiple cancer hyperthermia. Biomaterials 106:13–23. doi:10.1016/j.biomaterials.2016.08.015

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jarmila Hoderova and Eva Teichmanova for a technical assistance with radioactive measurements. The authors would also like to thank Jiri Mrazek for editorial assistance with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Pospisilova.

Ethics declarations

The present study was financially supported by Contipro a.s. (Czech Republic).

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 16075 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pospisilova, M., Zapotocky, V., Nesporova, K. et al. Preparation and biodistribution of 59Fe-radiolabelled iron oxide nanoparticles. J Nanopart Res 19, 80 (2017). https://doi.org/10.1007/s11051-016-3719-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3719-0

Keywords

Navigation