Skip to main content
Log in

Silver nanoparticles in complex biological media: assessment of colloidal stability and protein corona formation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Engineered silver nanoparticles (AgNPs) are among the most used nanomaterials in consumer products, therefore concerns are raised about their potential for adverse effects in humans and environment. Although an increasing number of studies in vitro and in vivo are being reported on the toxicity of AgNPs, most of them suffer from incomplete characterization of AgNPs in the tested biological media. As a consequence, the comparison of toxicological data is troublesome and the toxicity evaluation still remains an open critical issue. The development of a reliable protocol to evaluate interactions of AgNPs with surrounding proteins as well as to assess their colloidal stability is therefore required. In this regard, it is of importance not only to use multiple, easy-to-access and simple techniques but also to understand limitations of each characterization methods. In this work, the morphological and structural behaviour of AgNPs has been studied in two relevant biological media, namely 10 % FBS and MP. Three different techniques (Dynamic Light Scattering, Transmission Electron Microscopy, UV–Vis spectroscopy) were tested for their suitability in detecting AgNPs of three different sizes (10, 40 and 100 nm) coated with either citrate or polyvinylpyrrolidone. Results showed that UV–Vis spectroscopy is the most versatile and informative technique to gain information about interaction between AgNPs and surrounding proteins and to determine their colloidal stability in the tested biological media. These findings are expected to provide useful insights in characterizing AgNPs before performing any further in vitro/in vivo experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Axson JL, Stark DI, Bondy AL et al (2015) Rapid kinetics of size and pH-dependent dissolution and aggregation of silver nanoparticles in simulated gastric fluid. J Phys Chem C 119:20632–20641. doi:10.1021/acs.jpcc.5b03634

    Article  Google Scholar 

  • Casals E, Pfaller T, Duschl A et al (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4:3623–3632. doi:10.1021/nn901372t

    Article  Google Scholar 

  • Cascio C, Geiss O, Franchini F et al (2015) Detection, quantification and derivation of number size distribution of silver nanoparticles in antimicrobial consumer products. J Anal Atom Spectrom 30:1255–1265. doi:10.1039/c4ja00410h

    Article  Google Scholar 

  • Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12. doi:10.1016/j.toxlet.2007.10.004

    Article  Google Scholar 

  • Docter D, Westmeier D, Markiewicz M et al (2015) The nanoparticle biomolecule corona: lessons learned–challenge accepted? Chem Soc Rev 44:6094–6121. doi:10.1039/c5cs00217f

    Article  Google Scholar 

  • Durán N, Silveira CP, Durán M, Martinez DST (2015) Silver nanoparticle protein corona and toxicity: a mini-review. J Nanobiotechnol 13:55. doi:10.1186/s12951-015-0114-4

    Article  Google Scholar 

  • Edwards-Jones V (2009) The benefits of silver in hygiene, personal care and healthcare. Lett Appl Microbiol 49:147–152. doi:10.1111/j.1472-765X.2009.02648.x

    Article  Google Scholar 

  • Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64:129–137. doi:10.1016/j.addr.2011.09.001

    Article  Google Scholar 

  • Fernández-Iglesias N, Bettmer J (2015) Complementary mass spectrometric techniques for the quantification of the protein corona: a case study on gold nanoparticles and human serum proteins. Nanoscale 7:14324–14331. doi:10.1039/c5nr02625c

    Article  Google Scholar 

  • Gebauer JS, Malissek M, Simon S et al (2012) Impact of the nanoparticle–protein corona on colloidal stability and protein structure. Langmuir 28:9673–9679. doi:10.1021/la301104a

    Article  Google Scholar 

  • Gliga AR, Skoglund S, Wallinder IO et al (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11:11. doi:10.1186/1743-8977-11-11

    Article  Google Scholar 

  • Glover RD, Miller JM, Hutchison JE (2011) Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. ACS Nano 5:8950–8957. doi:10.1021/nn2031319

    Article  Google Scholar 

  • Hussain SM, Warheit DB, Ng SP et al (2015) At the crossroads of nanotoxicology in vitro: past achievements and current challenges. Toxicol Sci 147:5–16. doi:10.1093/toxsci/kfv106

    Article  Google Scholar 

  • Jurašin DD, Ćurlin M, Capjak I et al (2016) Surface coating affects behavior of metallic nanoparticles in a biological environment. Beilstein J Nanotechnol 7:246–262. doi:10.3762/bjnano.7.23

    Article  Google Scholar 

  • Kaegi R, Voegelin A, Sinnet B et al (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Technol 45:3902–3908. doi:10.1021/es1041892

    Article  Google Scholar 

  • Karmali PP, Simberg D (2011) Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opin Drug Deliv 8:343–357. doi:10.1517/17425247.2011.554818

    Article  Google Scholar 

  • Kato H, Suzuki M, Fujita K et al (2009) Reliable size determination of nanoparticles using dynamic light scattering method for in vitro toxicology assessment. Toxicol Vitr 23:927–934. doi:10.1016/j.tiv.2009.04.006

    Article  Google Scholar 

  • Kelly KL, Coronado E, Zhao L et al (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677. doi:10.1021/jp026731y

    Article  Google Scholar 

  • Kim S, Ryu DY (2013) Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol 33:78–89. doi:10.1002/jat.2792

    Article  Google Scholar 

  • Krpetic Z, Davidson AM, Volk M et al (2013) High-resolution sizing of monolayer-protected gold clusters by differential centrifugal sedimentation. ACS Nano 7:8881–8890. doi:10.1021/nn403350v

    Article  Google Scholar 

  • Laborda F, Bolea E, Jimenez-Lamana J (2014) Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Anal Chem 86:2270–2278. doi:10.1021/ac402980q

    Article  Google Scholar 

  • Lin P-C, Lin S, Wang PC, Sridhar R (2014) Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 32:711–726. doi:10.1016/j.biotechadv.2013.11.006

    Article  Google Scholar 

  • Liu J, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4:6903–6913. doi:10.1021/nn102272n

    Article  Google Scholar 

  • Liu J, Wang Z, Liu FD et al (2012) Chemical transformations of nanosilver in biological environments. ACS Nano 6:9887–9899. doi:10.1021/nn303449n

    Article  Google Scholar 

  • Liu W, Rose J, Plantevin S et al (2013) Protein corona formation for nanomaterials and proteins of a similar size: hard or soft corona? Nanoscale 5:1658–1668. doi:10.1039/c2nr33611a

    Article  Google Scholar 

  • Liu J, Murphy KE, MacCuspie RI, Winchester MR (2014) Capabilities of single particle inductively coupled plasma mass spectrometry for the size measurement of nanoparticles: a case study on gold nanoparticles. Anal Chem 86:3405–3414. doi:10.1021/ac403775a

    Article  Google Scholar 

  • Lopez-Serrano A, Olivas RM, Landaluze JS, Camara C (2014) Nanoparticles: a global vision. Characterization, separation, and quantification methods. Potential environmental and health impact. Anal Methods 6:38–56. doi:10.1039/c3ay40517f

    Article  Google Scholar 

  • Loza K, Diendorf J, Sengstock C et al (2014) The dissolution and biological effects of silver nanoparticles in biological media. J Mater Chem B 2:1634. doi:10.1039/c3tb21569e

    Article  Google Scholar 

  • Lundqvist M, Stigler J, Elia G et al (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–14270. doi:10.1073/pnas.0805135105

    Article  Google Scholar 

  • Maayan G, Liu LK (2011) Silver nanoparticles assemblies mediated by functionalized biomimetic oligomers. Biopolymers 96:679–687. doi:10.1002/bip.21632

    Article  Google Scholar 

  • MacCuspie RI (2011) Colloidal stability of silver nanoparticles in biologically relevant conditions. J Nanoparticle Res 13:2893–2908. doi:10.1007/s11051-010-0178-x

    Article  Google Scholar 

  • Mahmoudi M, Monopoli MP, Rezaei M et al (2013) The protein corona mediates the impact of nanomaterials and slows amyloid beta fibrillation. ChemBioChem 14:568–572. doi:10.1002/cbic.201300007

    Article  Google Scholar 

  • Montes-Burgos I, Walczyk D, Hole P et al (2010) Characterisation of nanoparticle size and state prior to nanotoxicological studies. J Nanoparticle Res 12:47–53. doi:10.1007/s11051-009-9774-z

    Article  Google Scholar 

  • Moore TL, Rodriguez-Lorenzo L, Hirsch V et al (2015) Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem Soc Rev 44:6287–6305. doi:10.1039/c4cs00487f

    Article  Google Scholar 

  • Murdock RC, Braydich-Stolle L, Schrand AM et al (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253. doi:10.1093/toxsci/kfm240

    Article  Google Scholar 

  • Poda AR, Bednar AJ, Kennedy AJ et al (2011) Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry. J Chromatogr A 1218:4219–4225. doi:10.1016/j.chroma.2010.12.076

    Article  Google Scholar 

  • Recordati C, De Maglie M, Bianchessi S et al (2016) Tissue distribution and acute toxicity of silver after single intravenous administration in mice: nano-specific and size-dependent effects. Part Fibre Toxicol 13:12. doi:10.1186/s12989-016-0124-x

    Article  Google Scholar 

  • Reidy B, Haase A, Luch A et al (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials (Basel) 6:2295–2350. doi:10.3390/ma6062295

    Article  Google Scholar 

  • SCENIHR (Scientific Committee on Emerging and Newly Identified Health Risks) (2014) Nanosilver: safety, health and environmental effects and role in antimicrobial resistance. http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_039.pdf

  • Stebounova LV, Guio E, Grassian VH (2011) Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J Nanoparticle Res 13:233–244. doi:10.1007/s11051-010-0022-3

    Article  Google Scholar 

  • Tenzer S, Docter D, Rosfa S et al (2011) Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5:7155–7167. doi:10.1021/nn201950e

    Article  Google Scholar 

  • Tiede K, Boxall A, Tear S et al (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A 25:795–821. doi:10.1080/02652030802007553

    Article  Google Scholar 

  • Tolaymat TM, El Badawy AM, Genaidy A et al (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408:999–1006. doi:10.1016/j.scitotenv.2009.11.003

    Article  Google Scholar 

  • Treuel L, Eslahian KA, Docter D et al (2014) Physicochemical characterization of nanoparticles and their behavior in the biological environment. Phys Chem Chem Phys 16:15053–15067. doi:10.1039/c4cp00058g

    Article  Google Scholar 

  • Tsai DH, Cho TJ, Delrio FW et al (2011) Hydrodynamic fractionation of finite size gold nanoparticle clusters. J Am Chem Soc 133:8884–8887. doi:10.1021/ja203328j

    Article  Google Scholar 

  • Tulve NS, Stefaniak AB, Vance ME et al (2015) Characterization of silver nanoparticles in selected consumer products and its relevance for predicting children’s potential exposures. Int J Hyg Environ Health 218:345–357. doi:10.1016/j.ijheh.2015.02.002

    Article  Google Scholar 

  • Van Der Zande M, Vandebriel RJ, Van Doren E et al (2012) Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 6:7427–7442. doi:10.1021/nn302649p

    Article  Google Scholar 

  • Von Der Kammer F, Legros S, Hofmann T et al (2011) Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. TrAC Trends Anal Chem 30:425–436. doi:10.1016/j.trac.2010.11.012

    Article  Google Scholar 

  • Walczyk D, Bombelli FB, Monopoli MP et al (2010) What the cell “sees” in bionanoscience. J Am Chem Soc 132:5761–5768. doi:10.1021/ja910675v

    Article  Google Scholar 

  • Wijnhoven SWP, Peijnenburg WJGM, Herberts CA et al (2009) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138. doi:10.1080/17435390902725914

    Article  Google Scholar 

  • Yang M, Fu Z, Lin F, Zhu X (2011) Incident angle dependence of absorption enhancement in plasmonic solar cells. Opt Express 19(Suppl 4):A763–A771. doi:10.1364/OE.19.00A763

    Article  Google Scholar 

  • Zhang Y, Yang M, Portney NG et al (2008) Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomed Microdevices 10:321–328. doi:10.1007/s10544-007-9139-2

    Article  Google Scholar 

  • Zook JM, MacCuspie RI, Locascio LE et al (2011a) Stable nanoparticle aggregates/agglomerates of different sizes and the effect of their size on hemolytic cytotoxicity. Nanotoxicology 5:517–530. doi:10.3109/17435390.2010.536615

    Article  Google Scholar 

  • Zook JM, Rastogi V, Maccuspie RI et al (2011b) Measuring agglomerate size distribution and dependence of localized surface plasmon resonance absorbance on gold nanoparticle agglomerate size using analytical ultracentrifugation. ACS Nano 5:8070–8079. doi:10.1021/nn202645b

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mouse and Animal Pathology Lab (Filarete Foundation) for providing us the MP used in this study. Davide Marchesi is kindly acknowledged for TEM measurements.

Funding Information

This work was supported by Fondazione CARIPLO for the project “Toxicology of chronic exposure to engineered silver nanoparticles”, under the Program “Nanoparticles, nanotechnologies and ultrafine particles”. P. Milani, S. Argentiere acknowledge financial support from European project FutureNanoNeeds, “Framework to respond to regulatory needs of future nanomaterials and markets” g.a. 604602.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Argentiere.

Additional information

Dr. Simona Argentiere and Claudia Cella contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1503 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argentiere, S., Cella, C., Cesaria, M. et al. Silver nanoparticles in complex biological media: assessment of colloidal stability and protein corona formation. J Nanopart Res 18, 253 (2016). https://doi.org/10.1007/s11051-016-3560-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3560-5

Keywords

Navigation