Skip to main content
Log in

Effects of surfactant and polymerization method on the synthesis of magnetic colloidal polymeric nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The addition of superparamagnetic iron nanoparticles into polystyrene matrix allows for the modification of the physical properties as well as the implementation of new features in the hybrid nanomaterials. These materials have excellent potential for biomedical and bioengineering applications. Nevertheless, it is necessary to achieve a good dispersion of magnetic nanoparticles for its successful incorporation into polymer particles. This can be obtained through the use of a stabilizer, which provides stability against aggregation. In this work, magnetic nanoparticles were dispersed using different stabilizers. Subsequently, ferrofluids stabilized using the mixture of ABEX/IGEPAL and acrylic acid (AA) were used to synthesize PS-Fe3O4 nanocomposites, through miniemulsion and emulsion polymerization conventional techniques. Semicontinuous and batch processes were compared, by varying surfactants and their concentrations. The PS-Fe3O4 nanoparticles were characterized by dynamic light scattering, scanning electron microscopy, Raman spectroscopy, and vibrating sample magnetometer. Magnetic nanoparticle dispersions show better results when the anionic and nonionic surfactants are used as a mixture rather than when used alone. Results of DLS showed that the semicontinuous process allowed obtaining monodisperse materials, whereas polidisperse systems are generated in batch process. Raman spectroscopy confirmed the presence of magnetite and polystyrene in the nanocomposites. PS-Fe3O4 nanoparticles showed superparamagnetic behavior with final magnetization of around 0.01 emu/g and low coercivity, properties that make them suitable for applications in wide fields of technology. Particle size (Dz), was lower than 300 nm in all cases. Moreover, the use of AA as stabilizer allows enhancing the PS-Fe3O4 composite properties. These findings showed that particle size, morphology, and agglomeration are directly influenced by the concentration and the type of surfactant employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Arosio P, Mosconi M, Storti G, Morbidelli M (2011) Precipitation copolymerization of vinyl-imidazole and vinyl-pyrrolidone, 1-experimental analysis. Macromol React Eng 5:490–500

    Article  Google Scholar 

  • Buendía S, Cabañas G, Álvarez-Lucio G, Montiel-Sánchez H, Navarro-Clemente ME, Corea M (2011) Preparation of magnetic polymer particles with nanoparticles of Fe(0). J Colloid Interf Sci 354:139–143

    Article  Google Scholar 

  • Chakka VM, Altuncevahir B, Jin ZQ, Li Y, Liu JP (2006) Magnetic nanoparticles produced by surfactant-assisted ball milling. J Appl Phys 99(08E912):1–3

    Google Scholar 

  • Chauvierre C, Labarre D, Couvreur P, Vauthier C (2003) Plug-in spectrometry with optical fibers as a novel analytical tool for nanoparticles technology: application to the investigation of the emulsion polymerization of the alkylcyanoacrylate. J Nanopart Res 5:365–371

    Article  Google Scholar 

  • Chokprasombata K, Sirisathitkula C, Hardinga P, Chandarakb S, Yimnirunb R (2013) Monodisperse magnetic nanoparticles: effects of surfactants on the reaction between iron acetylacetonate and platinum acetylacetonate. Rev Mex Fis 59:224–228

    Google Scholar 

  • Conley Robert F (1996) Practical dispersion: a guide to understanding and formulating slurries. Wiley, Hoboken

    Google Scholar 

  • El-Aasser MS, Sudol ED (2004) Miniemulsions: overview of research and applications. J Coat Technol Res 1:20–31

    Article  Google Scholar 

  • Erdem D, Sudol ED, Dimonie VL, El-Aasser MS (2000) Encapsulation of inorganic particles via miniemulsion polymerization, III. characterization of encapsulation. J Polym Sci Part A1 38:4441–4450

    Article  Google Scholar 

  • Fainerman VB, Mobius D, Miller R (2001) Surfactants: chemistry, interfacial properties, applications. Elsevier, Amsterdam

    Google Scholar 

  • Ghorbani Z, Baharvand H, Nezhati MN, Panahi HA (2013) Magnetic polymer particles modified with β-cyclodextrin. J Polym Res 20(199):1–8

    Google Scholar 

  • Goodwin J (2009) Colloids and interfaces surfactants and polymers. Wiley, New York

    Google Scholar 

  • Gregorio-Jauregui KM, Pineda MG, Rivera-Salinas JE, Hurtado G, Saade H, Martínez JL, Ilyina A, López RG (2012) One-Step method for preparation of magnetic nanoparticles coated with chitosan. J Nanomater 2012:1–8

    Article  Google Scholar 

  • Guo Z, Park S, Hahn HT (2007) Magnetic and electromagnetic evaluation of the magnetic nanoparticles filled polyurethane nanocomposites. J Appl Phys 101:09m511–09m513

    Google Scholar 

  • Hai NH, Luong N, Chau N, Tai NQ (2009) Preparation of magnetic nanoparticles embedded in polystyrene microspheres. J Phys Conf Ser JPCS 187(012009):1–6

    Google Scholar 

  • Hanemann T, Szabó DV (2010) Polymer-Nanoparticle composites: from synthesis to modern applications. Materials 3:3468–3517

    Article  Google Scholar 

  • Hanesch M (2009) Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys J Int 177:941–948

    Article  Google Scholar 

  • Hwang Y-J, Oh C, Oh S-G (2005) Controlled release of retinol from silica particles prepared in O/W/O emulsion: the effects of surfactants and polymers. J Control Release 106:339–349

    Article  Google Scholar 

  • Koo HY, Chang ST, Choi WS, Park JH, Kim D-Yu, Velev OD (2006) Emulsion-Based synthesis of reversibly swellable, magnetic nanoparticle-embedded polymer microcapsules. Chem Mater 18:3308–3313

    Article  Google Scholar 

  • Kordás K, Kukkola J, Tóth G, Jantunen H, Szabó M, Sápi A, Kukovecz A, Kónya Z, Mikkola JP (2013) Springer Handbook of nanomaterials. Nanoparticle dispersions. Springer, Berlin, pp 729–776

    Google Scholar 

  • Liu X, Hu Q, Fang Z, Zhang X, Zhang B (2009) Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir 25:3–8

    Article  Google Scholar 

  • Loo AL, Pineda GM, Saade H, Treviño ME, López RG (2008) Synthesis of magnetic nanoparticles in bicontinuous microemulsions. Effect of surfactant concentration. J Mater Sci 43:3649–3654

    Article  Google Scholar 

  • Martínez JR, de Alba JR, Blanco-Esqueda IG, Guerrero-Serrano A, Ortega-Zarzosa G (2013) Coercivity values enhancement by incorporation of magnetic powders in inorganic matrix hosts. NJGC 3:1–5

    Article  Google Scholar 

  • Nomura M, Tobita H, Suzuki K (2005) Emulsion polymerization: kinetic and mechanistic aspects. Adv Polym Sci 175:1–128

    Article  Google Scholar 

  • Novakov IA, Dang NK, Vaniev MA, Sidorenko NV (2013) On the stabilization and methods for modification of nanosize particles used for the preparation of polymerinorganic nanocomposites. Russ Chem Bull 62:276–284

    Article  Google Scholar 

  • Osuna Y, Gregorio-Jáuregui KM, Gaona-Lozano JG, Garza-Garcia IM, Ilyina A, Barriga-Castro ED, Saade H, López RG (2012) Chitosan-coated magnetic nanoparticles with low chitosan content prepared in one-step. J Nanomater 2012:1–7

    Article  Google Scholar 

  • Palm A (1951) Raman spectrum of polystyrene. J Phys Chem 55:1320–1324

    Article  Google Scholar 

  • Philippova O, Barabanova A, Molchanov V, Khokhlov A (2011) Magnetic polymer beads: recent trends and developments in synthetic design and applications. Eur Polym J 47:542–559

    Article  Google Scholar 

  • Racles C, Iacob M, Butnaru M, Sacarescu L, Cazacu M (2014) Aqueous dispersion of metal oxide nanoparticles, using siloxane surfactants. Colloid Surf A 448:160–168

    Article  Google Scholar 

  • Ramírez LP, Landfester K (2003) Magnetic polystyrene nanoparticles with a high magnetite content obtained by miniemulsion processes. Macromol Chem Phys 204:22–31

    Article  Google Scholar 

  • Sarkar S, Guibal E, Quignard F, SenGupta AK (2012) Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. J Nanopart Res 14:715

    Article  Google Scholar 

  • Schork FJ, Luo Y, Smulders W, Russum JP, Butté A, Fontenot K (2005) Miniemulsion polymerization. Adv Polym Sci 175:129–255

    Article  Google Scholar 

  • Singh RP, Jain S, Ramarao P (2013) Surfactant-assisted dispersion of carbon nanotubes: mechanism of stabilization and biocompatibility of the surfactant. J Nanopart Res 15:1985

    Article  Google Scholar 

  • Sis H, Birinci M (2009) Effect of nonionic and ionic surfactants on zeta potential and dispersion properties of carbon black powders. Colloid Surf A 341:60–67

    Article  Google Scholar 

  • Skoglund S, Lowe TA, Hedberg J, Blomberg E, Wallinder IO, Wold S, Lundin M (2013) Effect of laundry surfactants on surface charge and colloidal stability of silver nanoparticles. Langmuir 29:8882–8891

    Article  Google Scholar 

  • Teja AS, Koh P-Y (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact 55:22–45

    Article  Google Scholar 

  • van Herk AM, Landfester K (2010) Advances in Polymer Science: Hybrid latex particles preparation with (Mini)emulsion polymerization. Springer, Berlin

    Google Scholar 

  • Wang Y, Li Y, Rong C, Liu JP (2007) Sm–Co hard magnetic nanoparticles prepared by surfactant-assisted ball milling. Nanotechnology 18(465701):1–4

    Google Scholar 

  • Wang Z, Lam A, Acosta E (2013) Suspensions of iron oxide nanoparticles stabilized by anionic surfactants. J Surfactants Deterg 16:397–407

    Article  Google Scholar 

  • Wilcoxon JP, Provencio PP (1999) Use of surfactant micelles to control the structural phase of nanosized iron clusters. J Phys Chem B 103:9809–9812

    Article  Google Scholar 

  • Wilson JL, Poddar P, Frey NA, Srikantha H (2004) Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles. J Appl Phys 95:1439–1443

    Article  Google Scholar 

  • Xing S, Zhao G (2007) Stability and particle size of polypyrrole dispersion using sodium dodecylbenzenesulfonate as surfactant. e-Polymers 18:1–9

    Google Scholar 

  • Yang J, Lee H, Hyung W, Park SB, Haam S (2005) Magnetic PECA nanoparticles as drug carriers for targeted delivery: synthesis and release characteristics. J Microencapsul 23:203–212

    Article  Google Scholar 

  • Zhang DH, Qin JG (2000) Study on the concentration dependence on orientation of polystyrene on silver by the sers technique. Chin J Polym Sci 18:177–180

    Google Scholar 

  • Zhou J, Ralston J, Sedev R, Beattie DA (2009) Functionalized gold nanoparticles: synthesis, structure and colloidal stability. J Colloid Interface Sci 331:251–262

    Article  Google Scholar 

Download references

Acknowledgments

The author Karla M. Gregorio-Jauregui is grateful to the National Council of Science and Technology (CONACyT) for the postdoctoral scholarship awarded to him.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica Corea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puentes-Vara, L.A., Gregorio-Jauregui, K.M., Bolarín, A.M. et al. Effects of surfactant and polymerization method on the synthesis of magnetic colloidal polymeric nanoparticles. J Nanopart Res 18, 212 (2016). https://doi.org/10.1007/s11051-016-3524-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3524-9

Keywords

Navigation