Skip to main content
Log in

Haloperidol-loaded lipid-core polymeric nanocapsules reduce DNA damage in blood and oxidative stress in liver and kidneys of rats

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Haloperidol (HP) nanoencapsulation improves therapeutic efficacy, prolongs the drug action time, and reduces its motor side effects. However, in a view of HP toxicity in organs like liver and kidneys in addition to the lack of knowledge regarding the toxicity of polymeric nanocapsules, our aim was to verify the influence of HP-nanoformulation on toxicity and oxidative stress markers in the liver and kidneys of rats, also observing the damage caused in the blood. For such, 28 adult male Wistar rats were designated in four experimental groups (n = 7) and treated with vehicle (C group), free haloperidol suspension (FH group), blank nanocapsules suspension (B-Nc group), and haloperidol-loaded lipid-core nanocapsules suspension (H-Nc group). The nanocapsules formulation presented the size of approximately 250 nm. All suspensions were administered to the animals (0.5 mg/kg/day-i.p.) for a period of 28 days. Our results showed that FH caused damage in the liver, evidenced by increased lipid peroxidation, plasma levels of aspartate aminotransferase, and alanine aminotransferase, as well as decreased cellular integrity and vitamin C levels. In kidneys, FH treatment caused damage to a lesser extent, observed by decreased activity of δ-aminolevulinate dehydratase (ALA-D) and levels of VIT C. In addition, FH treatment was also related to a higher DNA damage index in blood. On the other hand, animals treated with H-Nc and B-Nc did not show damage in liver, kidneys, and DNA. Our study indicates that the nanoencapsulation of haloperidol was able to prevent the sub-chronic toxicity commonly observed in liver, kidneys, and DNA, thus reflecting a pharmacological superiority in relation to free drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebi U, Chiu W, Milligan R (1995) Role of catalase on antioxidative defenses. J Struct Biol 2:117–118

    Google Scholar 

  • Ananth J, Parameswaran S, Hara B (2004) Drug therapy in schizophrenia. Curr Pharm Des 10:2205–2217

    Google Scholar 

  • Andem AB, Agbor RB, Ekpo IA (2013) Review on comet assay: a reliable tool for assessing dna damage in animal models. J Current Res Sci 1:405–427

    Google Scholar 

  • Andreassen OA, Jorgensen HA (2000) Neurotoxicity associated with neuroleptic-induced oral dyskinesias in rats - Implications for tardive dyskinesia? Prog Neurobiol 61(5):525–541

    Google Scholar 

  • Asanami S, Shimono K (2009) Species-level differences between mice and rats in regards to micronucleus induction with the hypothermia-inducing drug haloperidol. Mutat Res 31:102–105

    Google Scholar 

  • Avgoustakis K, Beletsi A, Panagi Z, Klepetsanis P, Karydas AG, Ithakissios DS (2002) PLGA–mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J Control Release 79:123–135

    Google Scholar 

  • Balbi A, Muscettola G, Staiano N, Martire G, De Lorenzo F (1980) Psychotropic drugs: evaluation of mutagenic effect. Pharmacol Res Commun 12:423–431

    Google Scholar 

  • Beasley CL, Barr A, Barakauskas V, Feresten A, Honer W, Wei VV, Ypsilanti A, Andreazza A (2011) Increased lipid peroxidation and peroxiredoxin levels in liver of rats treated with haloperidol and clozapine. Biol Psychiat 69(9):188S–188S

    Google Scholar 

  • Beck RCR, Pohlmann AR, Benvenutti EV, Costa TD, Guterres SS (2005) Nanostructure-coated diclofenac-loaded microparticles: preparation, morphological characterization, in vitro release and in vivo gastrointestinal tolerance. J Brazil Chem Soc 16:1233–1240

    Google Scholar 

  • Beck RCR, Haas SE, Guterres SS, Ré MI, Benvenutti EV, Pohlmann AR (2006) Nanoparticle-coated organic-inorganic microparticles: experimental design and gastrointestinal tolerance evaluation. Quím Nova 29:990–996

    Google Scholar 

  • Beck RCR, Pohlmann AR, Hoffmeister C, Gallas MR, Collnot E, Schaefer UF, Guterres SS, Lehr CM (2007) Dexamethasone-loaded nanoparticle coated microparticles: correlation between in vitro drug release and drug transport across caco-2 cell monolayers. Eur J Pharm Biopharm 67:18–30

    Google Scholar 

  • Bender EA, Adorne MD, Colomé LM, Abdalla DS, Guterres SS, Pohlmann AR (2012) Hemocompatibility of poly(ɛ-caprolactone) lipid-core nanocapsules stabilized with polysorbate 80-lecithin and uncoated or coated with chitosan. Int J Pharm 426:271–279

    Google Scholar 

  • Benvegnú DM, Barcelos RC, Boufleur N, Reckziegel P, Pase CS, Ourique AF, Beck RC, Bürger ME (2011) Haloperidol-loaded polysorbate-coated polymeric nanocapsules increases its efficacy in the antipsychotic treatment in rats. Eur J Pharm Biopharm 77:332–336

    Google Scholar 

  • Benvegnú DM, Barcelos RC, Boufleur N, Reckziegel P, Pase CS, Ourique AF, Beck RC, Bürger ME (2012) Haloperidol-loaded polysorbate-coated polymeric nanocapsules decrease its adverse motor side effects and oxidative stress markers in rats. Neurochem Int 61:623–631

    Google Scholar 

  • Benzi G (1993) Aerobic performance and oxygen free radicals. J Sport Med Phys Fit 33:205–222

    Google Scholar 

  • Bernardi A, Braganhol E, Jäger E, Figueiró F, Edelweiss MI, Pohlmann AR, Guterres SS, Battastini AM (2009) Indomethacin-loaded nanocapsules treatment reduces in vivo glioblastoma growth in a rat glioma model. Cancer Lett 281:53–63

    Google Scholar 

  • Bolcato J, Terrazzani G, Giusti P, Walley T, Chinellato A (2014) Atypical antipsychotic prescribing patterns in an Italian district 2001-2009 and the impact of regulatory warnings. Open Sci J Clin Med 2(1):10–14

    Google Scholar 

  • Boulikas T (2004) Low toxicity and anticancer activity of a novel liposomal cisplatin (Lipoplatin) in mouse xenografts. Oncol Rep 12(1):3–12

    Google Scholar 

  • Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliver Rev 54:631–651

    Google Scholar 

  • Budhian A, Siegel SJ, Winey KI (2005) Production of haloperidol-loaded PLGA nanoparticles for extended controlled drug release of haloperidol. J Microencapsul 22:773–785

    Google Scholar 

  • Budhian A, Siegel SJ, Winey KI (2007) Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. Int J Pharm 336:367–375

    Google Scholar 

  • Budhian A, Siegel SJ, Winey KI (2008) Controlling the in vitro release profiles for a system of haloperidol-loaded PLGA nanoparticles. Int J Pharm 346:151–159

    Google Scholar 

  • Bulcão RP, Freitas FA, Venturini CG, Dallegrave E, Durgante J, Göethel G, Cerski CTS, Zielinsky P, Pohlmann AR, Guterres SS, Garcia SC (2013) Acute and subchronic toxicity evaluation of poly (ɛ-Caprolactone) lipid-core nanocapsules in rats. Toxicol Sci 132(1):162–176

    Google Scholar 

  • Bulcão RP, de Freitas FA, Dallegrave E, Venturini CG, Baierle M, Durgante J, Sauer E, Cassini C, Cerski CT, Zielinsky P, Salvador M, Pohlmann AR, Guterres SS, Garcia SC (2014) In vivo toxicological evaluation of polymeric nanocapsules after intradermal administration. Eur J Pharm Biopharm 86(2):167–177

    Google Scholar 

  • Burkhardt C, Kelly JP, Lim YH, Filley CM, Parker WD (1993) Neuroleptic medications inhibit complex I of the electron transport chain. Ann Neurol 33:512–517

    Google Scholar 

  • Callewaert M, Dukic S, Van Gulick L, Vittier M, Gafa V, Andry MC, Molinari M, Roullin VG (2013) Etoposide encapsulation in surface-modified poly (lactide-co-glycolide) nanoparticles strongly enhances glioma antitumor efficiency. J Biomed Mater Res—Part A 101A:1319–1327

    Google Scholar 

  • Casey DE (2004) Dyslipidemia and atypical antipsychotic drugs. J Clin Psychiat 65(18):27–35

    Google Scholar 

  • Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483

    Google Scholar 

  • Csernansky JG, Mahmud R, Brenner R (2002) A comparison of risperidone and haloperidol for the prevention of relapse in patients with schizophrenia. N Engl J Med 346:16–22

    Google Scholar 

  • Dalla Corte CL, Fachinetto R, Colle D, Pereira RP, Avila DS, Villarinho JG, Wagner C, Pereira ME, Nogueira CW, Soares FA, Rocha JBT (2008) Potentially adverse interactions between haloperidol and valerian. Food Chem Toxicol 46:2369–2375

    Google Scholar 

  • Dayalu P, Chou KL (2008) Antipsychotic-induced extrapyramidal symptoms and their management. Expert Opin Pharmacother 9:1451–1462

    Google Scholar 

  • Dimer FA, Ortiz M, Pase CS, Roversi K, Friedrich RB, Pohlmann AR, Burger ME, Guterres SS (2014) Nanoencapsulation of olanzapine increases its efficacy in antipsychotic treatment and reduces adverse effects. J Biomed Nanotechnol 10(6):1137–1145

    Google Scholar 

  • Falqueiro AM, Primo FL, Morais PC, Mosiniewicz-Szablewska E, Suchocki P, Tedesco AC (2011) Selol loaded magnetic nanocapsules: a new approach for hyperthermia cancer therapy. J Appl Phys 109:07B306-1–07B306-3

    Google Scholar 

  • Fang F, Gong CY, Dong PW, Fu SZ, Gu YC, Guo G, Zhao X, Wei YQ, Qian ZY (2009) Acute toxicity evaluation of in situ gel-forming controlled drug delivery system based on biodegradable poly(epsilon-caprolactone)- poly(ethylene glycol)- poly(epsilon-caprolactone) copolymer. Biomed Mater 4:025002

    Google Scholar 

  • Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55(1):r1–r4

    Google Scholar 

  • Fontana MC, Coradini K, Guterres SS, Pohlmann AR, Beck RC (2009) Nanoencapsulation as a way to control the release and to increase the photostability of clobetasol propionate: influence of the nanostructured system. J Biomed Nanotechnol 5:254–263

    Google Scholar 

  • Fridovich I (1986) Superoxide dismutases. Adv Enzymol RAMB 58:61–97

    Google Scholar 

  • Fukunishi I, Kitaoka T, Shirai T, Kino K, Kanematsu E, Sato Y (2002) Psychiatric disorders among patients undergoing hemodialysis therapy. Nephron 91:344–347

    Google Scholar 

  • Gaertner I, Altendorf K, Batra A, Gaertner HJ (2001) Relevance of liver enzyme elevations with four different neuroleptics: a retrospective review of 7263 treatment courses. J Clin Psychopharm 21:215–222

    Google Scholar 

  • Galley H, Davies MJ, Webster NR (1996) Ascorbyl radical formation in patients with sepsis: effects of ascorbate loading. Free Radical Bio Med 20:139–143

    Google Scholar 

  • Gao Y, Xu P, Chen L, Li Y (2010) Prostaglandin E1 encapsulated into lipid nanoparticles improves its anti-inflammatory effect with low side-effect. Int J Pharm 387:263–271

    Google Scholar 

  • Gao Y, Yang R, Zhang Z, Chen L, Sun Z, Li Y (2011) Solid lipid nanoparticles reduce systemic toxicity of docetaxel: performance and mechanism in animal. Nanotoxicology 5(4):636–649

    Google Scholar 

  • Gebreselassie D, Bowen WD (2004) Sigma-2 receptors are specifically localized to lipid rafts in rat liver membranes. Eur J Pharmacol 493:19–28

    Google Scholar 

  • Gonçalves TL, Benvegnú DM, Bonfanti G, Frediani AV, Rocha JB (2009a) δ-Aminolevulinate dehydratase activity and oxidative stress during melphalan and cyclophosphamide-BCNU-etoposide (CBV) conditioning regimens in autologous bone marrow transplantation patients. Pharmacol Res 59(4):279–284

    Google Scholar 

  • Gonçalves TL, Benvegnú DM, Bonfanti G, Frediani AV, Rocha JB (2009b) δ-ALA-D activity is a reliable marker for oxidative stress in bone marrow transplant patients. BMC Cancer 9:138

    Google Scholar 

  • Gonçalves TL, Benvegnú DM, Bonfanti G, Frediani AV, Pereira DV, Rocha JB (2009c) Oxidative stress and δ-ALA-D activity in different conditioning regimens in allogeneic bone marrow transplantation patients. Clin Biochem 42:602–610

    Google Scholar 

  • Grillo R, dos Santos NZ, Maruyama CR, Rosa AH, de Lima R, Fraceto LF (2012) Poly(-caprolactone) nanocapsules as carrier systems for herbicides: physico-chemical characterization and genotoxicity evaluation. J Hazard Mater 231–232:1–9

    Google Scholar 

  • Grotto D, Santa Maria LD, Boeira S, Valentini J, Charão MF, Moro AM, Nascimento PC, Pomblum VJ, Garcia SC (2007) Rapid quantification of malondialdehyde in plasma by high performance liquid chromatography-visible detection. J Pharmaceutical Biomed 43:619–624

    Google Scholar 

  • Gulaboglu M, Halici Z, Aydin N, Cadirci E, Gul M, Suleyman H, Oral E (2006) The effects of risperidone, olanzapine and haloperidol on enzyme activities in kidney tissue of rats. Eur Neuropsychopharm 16:S246–S247

    Google Scholar 

  • Halici Z, Dursun H, Keles ON, Odaci E, Suleyman H, Aydin N, Cadirci E, Kalkan Y, Unal B (2009) Effect of chronic treatment of haloperidol on the rat liver: a stereological and histopathological study. N-S Arch Pharmacol 379:253–261

    Google Scholar 

  • Hanagama M, Inoue H, Kamiya M, Shinone K, Nata M (2008) Gene expression on liver toxicity induced by administration of haloperidol in rats with severe fatty liver. Leg Med 10:177–184

    Google Scholar 

  • Hu YL, Qi W, Han F, Shao JZ, Gao JQ (2011) Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model. Int J Nanomed 6:3351–3359

    Google Scholar 

  • Huang Y, Gao H, Gou M, Ye H, Liu Y, Gao Y, Peng F, Qian Z, Cen X, Zhao Y (2010) Acute toxicity and genotoxicity studies on poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) nanomaterials. Mutat Res 696:101–106

    Google Scholar 

  • Ianiski FR, Alves CB, Souza AC, Pinton S, Roman SS, Rhoden CR, Alves MP, Luchese C (2012) Protective effect of meloxicam-loaded nanocapsules against amyloid-β peptide-induced damage in mice. Behav Brain Res 230:100–107

    Google Scholar 

  • Jacques-Silva MC, Nogueira CW, Broch LC, Flores EM, Rocha JB (2001) Diphenyl diselenide and ascorbic acid changes deposition of selenium and ascorbic acid in liver and brain of mice. Toxicol Appl Pharm 88:119–125

    Google Scholar 

  • Kim SY, Lee YM, Baik DJ, Kang JS (2003) Toxic characteristics of methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) nanospheres, in vitro and in vivo studies in the normal mice. Biomaterials 24:55–63

    Google Scholar 

  • Kumar M, Pathak K, Misra A (2009) Formulation and characterization of nanoemulsion-based drug delivery system of risperidone. Drug Dev Ind Pharm 35:387–395

    Google Scholar 

  • Lai MK, Chang CY, Lien YW, Tsiang RC (2006) Application of gold nanoparticles to microencapsulation of thioridazine. J Control Release 111:352–361

    Google Scholar 

  • Liu Y, Schubert D (1997) Cytotoxic amyloid peptides inhibit cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction by enhancing MTT formazan exocytosis. J Neurochem 69(6):2285–2293

    Google Scholar 

  • Loveday KS, Lugo MH, Resnick MA, Anderson BE, Zeiger E (1989) Chromosome aberration and sister chromatid exchange tests in Chinese hamster ovary cells in vitro: results with 20 chemicals. Environ Mol Mutagen 13(1):60–94

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Manjunath K, Venkateswarlu V (2005) Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J Control Release 107:215–228

    Google Scholar 

  • Marchiori ML, Lubini G, Dalla Nora G, Friedrich RB, Fontana MC, Ourique AF, Bastos MO, Rigo LA, Silva CB, Tedesco SB, Beck RC (2010) Hydrogel containing dexamethasone-loaded nanocapsules for cutaneous administration: preparation, characterization, and in vitro drug release study. Drug Dev Ind Pharm 36:962–971

    Google Scholar 

  • Maurer I, Moller HJ (1997) Inhibition of complex I by neuroleptics in normal brain cortex parallels the extrapyramidal toxicity of neuroleptics. Mol Cell Biochem 174:255–259

    Google Scholar 

  • Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW (2007) Nanoparticles: pharmacological and toxicological significance. Brit J Pharmacol 150:552–558

    Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    Google Scholar 

  • Möller HJ, Riedel M, Jager M, Wickelmaier F, Maier W, Kühn KU, Buchkremer G, Heuser I, Klosterkötter J, Gastpar M, Braus DF, Schlösser R, Schneider F, Ohmann C, Riesbeck M, Gaebel W (2008) Short-term treatment with risperidone or haloperidol in first-episode schizophrenia: 8-week results of a randomized controlled trial within the German Research Network on Schzophrenia. Int J Neuropsychoph 11(7):985–997

    Google Scholar 

  • Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385:113–142

    Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. J Immunol Methods 16:55–63

    Google Scholar 

  • Muthu MS, Singh S (2008) Studies on biodegradable polymeric nanoparticles of risperidone: in vitro and in vivo evaluation. Nanomedicine 3:305–319

    Google Scholar 

  • Muthu MS, Singh S (2009) Targeted nanomedicines: effective treatment modalities for cancer, AIDS and brain disorders. Nanomedicine 4:105–118

    Google Scholar 

  • Newcomer JW (2005) Second-generation (atypical) antipsychotics and metabolic effects: a comprehensive literature review. CNS Drugs 19(1):1–93

    Google Scholar 

  • Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Int Med 267:89–105

    Google Scholar 

  • Ourique AF, Melero A, Silva CB, Schaefer UF, Pohlmann AR, Guterres SS, Lehr CM, Kostka KH, Beck RC (2011) Improved photostability and reduced skin permeation of tretinoin: development of a semisolid nanomedicine. Eur J Pharm Biopharm 79:95–101

    Google Scholar 

  • Padh H (2005) Vitamin C: newer insights into its biochemical functions. Cell Mol Biol Lett 10:255–264

    Google Scholar 

  • Parihk T, Bommana MM, Squillante E (2010) Efficacy of surface charge in targeting pegylated nanoparticles of sulpiride to the brain. Eur J Pharm Biopharm 74:442–450

    Google Scholar 

  • Ponto T, Ismail NI, Abdul Majeed AB, Marmaya NH, Zakaria ZA (2010) A prospective study on the pattern of medication use for schizophrenia in the outpatient pharmacy department, hospital Tengku Ampuan Rahimah, Selangor, Malaysia. Methods Find Exp Clin 32(6):427–432

    Google Scholar 

  • Primo FL, Rodrigues MM, Simioni AR, Lacava ZG, Morais PC, Tedesco AC (2008) Photosensitizer-loaded magnetic nanoemulsion for use in synergic photodynamic and magnetohyperthermia therapies of neoplastic cells. J Nanosci Nanotechnol 8:5873–5877

    Google Scholar 

  • Prince JA, Hassin MS, Oreland L (1997) Neuroleptic-induced mitochondrial enzyme alterations in the rat brain. J Pharmacol Exp Ther 280:261–267

    Google Scholar 

  • Rodrigues MMA, Simioni AR, Primo FL, Siqueira-Moura MP, Morais PC, Tedesco AC (2009) Preparation, characterization and in vitro cytotoxicity of BSA-based nanospheres containing nanosized magnetic particles and/or photosensitizer. J Magn Magn Mater 321:1600–1603

    Google Scholar 

  • Rollema H, Skolnik M, D’Engelbronner J, Igarashi K, Usuki E, Castagnoli N (1994) MPP(+)-like neurotoxicity of a pyridinium metabolite derived from haloperidol: in vivo microdialysis and in vitro mitochondrial studies. J Pharmacol Exp Ther 268:380–387

    Google Scholar 

  • Sagara Y (1998) Induction of reactive oxygen species in neurons by haloperidol. J Neurochem 71(3):1002–1012

    Google Scholar 

  • Sallie R, Tredger JM, Williams R (1991) Drugs and the liver part 1: testing liver function. Biopharm Drug Dispos 12:251–259

    Google Scholar 

  • Santos NP, Nascimento SC, Wanderley MS, Pontes-Filho NT, da Silva JF, de Castro CM, Pereira EC, da Silva NH, Honda NK, Santos-Magalhães NS (2006) Nanoencapsulation of usnic acid: an attempt to improve antitumour activity and reduce hepatotoxicity. Eur J Pharm Biopharm 64:154–160

    Google Scholar 

  • Sassa S (1982) Delta-aminolevulinic acid dehydratase assay. Enzyme 28:133–145

    Google Scholar 

  • Sawas AH, Gilbert JC (1985) Lipid peroxidation as a possible mechanism for the neurotoxic and nephrotoxic effects of a combination of lithium carbonate and haloperidol. Arch Int Pharmacodyn T 276(2):301–312

    Google Scholar 

  • Schiff D, Chan G, Poznansky MJ (1985) Bilirubin toxicity in neural cell lines N115 and NBR10A. Pediatr Res 19(9):908–911

    Google Scholar 

  • Seju U, Kumar A, Sawant KK (2011) Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies. Acta Biomater 7(12):4169–4176

    Google Scholar 

  • Silva AC, González-Mira E, García ML, Egea MA, Fonseca J, Silva R, Santos D, Souto EB, Ferreira D (2011) Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): high pressure homogenization versus ultrasound. Colloid Surf B 86:158–165

    Google Scholar 

  • Silveira ID (2007) O efeito do uso crônico de haloperidol associado à dieta com alto teor de lipídio na peroxidação lipídica no fígado de ratos wistar. Dissertação (Mestrado em Bioquímica). Universidade Federa de Santa Maria, Santa Maria

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantification of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Google Scholar 

  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20

    Google Scholar 

  • Trifirò G, Gambassi G, Sen EF, Caputi AP, Bagnardi V, Brea J, Sturkenboom MC (2010) Association of community-acquired pneumonia with antipsychotic drug use in elderly patients. A nested case-control study. Ann Intern Med 7:418–427

    Google Scholar 

  • Usuki E, Pearce R, Parkinson A, Castagnol N (1996) Studies on the conversion of haloperidol and its tetrahydropyridine dehydration product to potentially neurotoxic pyridinium metabolites by human liver microsomes. Chem Res Toxicol 9(4):800–806

    Google Scholar 

  • Uyanik A, Unal D, Halici Z, Cetinkaya R, Altunkaynak BZ, Keles ON, Polat B, Topal A, Colak S, Suleyman H, Unal B (2009) Does haloperidol have side effects on histological and stereological structure of the rat kidneys? Ren Failure 31(7):573–581

    Google Scholar 

  • Van Cauteren H, Vanparys P, de Meester C, Lambotte-Vandepaer M, Vandenberghe J, Marsboom R (1987) Mutagenic and leukemogenic activity of haloperidol: a negative study. Drug Chem Toxicol 10:311–327

    Google Scholar 

  • Venkateswarlu V, Manjunath K (2004) Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J Control Release 95:627–638

    Google Scholar 

  • Venturini CG, Jäger E, Oliveira CP, Bernardi A, Battastini AMO, Guterres SS, Pohlmann AR (2011) Formulation of lipid core nanocapsules. Colloid Surface 375:200–208

    Google Scholar 

  • Vivek K, Reddy H, Murthy RSR (2007) Investigations of the effect of the lipid matrix on drug entrapment, in vitro release, and physical stability of olanzapine-loaded solid lipid nanoparticles. Pharm Sci Tech 8:16–24

    Google Scholar 

  • Wei Z, Mousseau DD, Dai Y, Cao X, Li XM (2006) Haloperidol induces apoptosis via the sigma2 receptor system and Bcl-XS. J Pharmacogenomics 6:279–288

    Google Scholar 

  • Wright AM, Bempong J, Kirby ML, Barlow RL, Bloomquist JR (1998) Effects of haloperidol metabolites on neurotransmitter uptake and release: possible role in neurotoxicity and tardive dyskinesia. Brain Res 788(1–2):215–222

    Google Scholar 

  • Yokoyama M, Okano T (1996) Targetable drug carriers: present status and a future perspective. Adv Drug Deliver Rev 21:77–80

    Google Scholar 

  • Yu BP (1994) Cellular defenses against damage from reactive oxygen species. Physiol Rev 74:139–162

    Google Scholar 

  • Zimmerman HJ (1999) Neuroleptic drugs. In: Zimmerman HJ (ed) Hepatotoxicity: the adverse effects of drugs and other chemicals on the liver, 2nd edn. Lippincott, Philadelphia, pp 483–491

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to CNPq (Edital Nanotecnologia MCT/CNPq 62/2010 no. 577450) for the financial support, to CAPES (K. R.; F. T. and B. S. H.), CNPq (Kr. R. and L. T. V.) for the fellowships, as well as for the research Grants (CNPq S. C. G. and M. E. B.).

Conflict of interest

Authors report no conflicts of interest.

Compliance with Ethical Standards

The experimental protocol of this study was approved by the Animal Ethics Committee of Universidade Federal de Santa Maria (CIETEA-22/2010), affiliated to CONCEA, and adhered to the ‘‘Principles of Laboratory Animal Care’’ and international rules of ethics in research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dalila M. Benvegnú or Marilise E. Burger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roversi, K., Benvegnú, D.M., Roversi, K. et al. Haloperidol-loaded lipid-core polymeric nanocapsules reduce DNA damage in blood and oxidative stress in liver and kidneys of rats. J Nanopart Res 17, 199 (2015). https://doi.org/10.1007/s11051-015-2979-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2979-4

Keywords

Navigation