Skip to main content
Log in

Diffusion of gold nanoparticles in toluene and water as seen by dynamic light scattering

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Although the range of applications for gold nanoparticles (Au NPs) is growing rapidly, the study of the diffusion in different solvents is rare. This paper describes the translational diffusion coefficient of Au NPs inside toluene and water measured by dynamic light scattering. The size of the nanoparticles is examined by transmission electron microscopy and compared with the hydrodynamic radius. The diffusion of the nanoparticles is measured in different angles and temperatures in the two solvents. It is shown that the diffusion measured in both systems obeys Arrhenius relation with the temperature. Although the viscosity of toluene is higher than that of water, the Au NPs are found to diffuse faster in toluene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali ME, Hashim U, Mustafa S et al (2012) Gold nanoparticle sensor for the visual detection of pork adulteration in meatball formulation. J Nanomater 2012:1–7. doi:10.1155/2012/103607

    Google Scholar 

  • Barcikowski S, Hahn A, Kabashin AV, Chichkov BN (2007) Properties of nanoparticles generated during femtosecond laser machining in air and water. Appl Phys A 87:47–55. doi:10.1007/s00339-006-3852-1

    Article  Google Scholar 

  • Brown SD, Nativo P, Smith J-A et al (2010) Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 132:4678–4684. doi:10.1021/ja908117a

    Article  Google Scholar 

  • Brust M, Walker M, Bethell D et al (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun 7:801. doi:10.1039/c39940000801

    Article  Google Scholar 

  • Faraday M (1857) The Bakerian Lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc London 147:145–181. doi:10.2307/108616

    Article  Google Scholar 

  • Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22. doi:10.1038/physci241020a0

    Article  Google Scholar 

  • Gohy J-F, Varshney SK, Jerome R (2001) Water-soluble complexes formed by poly (2-vinylpyridinium)-block-poly (ethylene oxide) and poly (sodium methacrylate)-block-poly (ethylene oxide) copolymers. Macromolecules 34:3361–3366

    Article  Google Scholar 

  • Huang D, Liao F, Molesa S et al (2003) Plastic-compatible low resistance printable gold nanoparticle conductors for flexible electronics. J Electrochem Soc 150:G412. doi:10.1149/1.1582466

    Article  Google Scholar 

  • Martin MN, Basham JI, Chando P, Eah S-K (2010) Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly. Langmuir 26:7410–7417. doi:10.1021/la100591h

    Article  Google Scholar 

  • McLinden M, Splett J (2008) A liquid density standard over wide ranges of temperature and pressure based on toluene. J Res Natl Inst Stand Technol 113:29–67

    Article  Google Scholar 

  • Nabika H, Inumata T, Kitahata H, Unoura K (2014) Effect of gold nanoparticles on chemical oscillators: a comparative study of the experimental and simulated results. Coll Surf A 460:236–239. doi:10.1016/j.colsurfa.2014.04.014

    Article  Google Scholar 

  • Perrault SD, Chan WCW (2009) Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J Am Chem Soc 131:17042–17043. doi:10.1021/ja907069u

    Article  Google Scholar 

  • Rodriguez-Fernandez J, Perez-Juste J, Liz-Marzan LM, Lang PR (2007) Dynamic light scattering of short Au rods with low aspect ratios. J Phys Chem C 111:5020–5025. doi:10.1021/jp067049x

    Article  Google Scholar 

  • Santos FJV (2006) Standard reference data for the viscosity of toluene. J Phys Chem Ref Data 35:1. doi:10.1063/1.1928233

    Article  Google Scholar 

  • Schmitz KS, Phillies GDJ (1991) An introduction to dynamic light scattering by macromolecules. Phys Today 44:66. doi:10.1063/1.2810116

    Article  Google Scholar 

  • Storhoff JJ, Elghanian R, Mucic RC et al (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120:1959–1964. doi:10.1021/ja972332i

    Article  Google Scholar 

  • Yang J, Sargent EH, Kelley SO, Ying JY (2009) A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis. Nat Mater 8:683–689. doi:10.1038/nmat2490

    Article  Google Scholar 

  • Zimbone M, Musumeci P, Baeri P et al (2012) Rotational dynamics of gold nanoparticle chains in water solution. J Nanopart Res 14:1308. doi:10.1007/s11051-012-1308-4

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the startup grant of City University of Hong Kong under projects 7800359 and 9610290.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh M. Chathoth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, K., Chen, C., Wei, K. et al. Diffusion of gold nanoparticles in toluene and water as seen by dynamic light scattering. J Nanopart Res 17, 153 (2015). https://doi.org/10.1007/s11051-015-2965-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2965-x

Keywords

Navigation