Skip to main content
Log in

Photocatalytic oxidation of propylene on La and N codoped TiO2 nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Lanthanum- and nitrogen-codoped TiO2 photocatalysts was synthesized using orthorhombic nanotubes titanic acid as the precursor by a simple impregnation and subsequent calcination method. The morphology, phase structure, and properties of La- and N-codoped TiO2 were well characterized by transmission electron microscopy, X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy, and UV–Vis diffuse reflectance spectra. The La-/N-codoped TiO2 showed excellent photoactivity of propylene oxidation compared with the single-doped TiO2 and La-/N-codoped P25 TiO2 nanoparticles under visible light irradiation. The origin of the enhancement of the visible light-responsive photocatalytic activity was discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme1
Fig. 9

Similar content being viewed by others

References

  • Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  Google Scholar 

  • Boppella R, Basak P, Manorama SV (2012) Viable method for the synthesis of biphasic TiO2 nanocrystals with tunable phase composition and enabled visible-light photocatalytic performance. ACS Appl Mater Interfaces 4:1239–1246. doi:10.1021/am201354r

    Article  Google Scholar 

  • Cong Y, Tian B, Zhang J (2011) Improving the thermal stability and photocatalytic activity of nanosized titanium dioxide via La3+and N co-doping. Appl Catal B 101:376–381. doi:10.1016/j.apcatb.2010.10.006

    Article  Google Scholar 

  • Dana Dvoranová VB, Mazúra Milan, Malati Mounir A (2002) Investigations of metal-doped titanium dioxide photocatalysts. Appl Catal B 37:91–105. doi:10.1016/S0926-3373(01)00335-6

    Article  Google Scholar 

  • Du W et al (2013) ZrO2/Dy2O3 solid solution nano-materials: tunable composition, visible light-responsive photocatalytic activities and reaction mechanism. J Am Ceram Soc 96:2979–2986. doi:10.1111/jace.12414

    Article  Google Scholar 

  • Feng C, Wang Y, Zhang J, Yu L, Li D, Yang J, Zhang Z (2012) The effect of infrared light on visible light photocatalytic activity: an intensive contrast between Pt-doped TiO2 and N-doped TiO2. Appl Catal B 113–114:61–71. doi:10.1016/j.apcatb.2011.09.027

    Article  Google Scholar 

  • Gao X, Jiang Y, Zhong Y, Luo Z, Cen K (2010) The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3. J Hazard Mater 174:734–739. doi:10.1016/j.jhazmat.2009.09.112

    Article  Google Scholar 

  • Huang D, Liao S, Quan S, Liu L, He Z, Wan J, Zhou W (2007) Preparation of anatase F doped TiO2 sol and its performance for photodegradation of formaldehyde. J Mater Sci 42:8193–8202

    Article  Google Scholar 

  • Huang Y, Ho W, Ai Z, Song X, Zhang L, Lee S (2009) Aerosol-assisted flow synthesis of B-doped, Ni-doped and B-Ni-codoped TiO2 solid and hollow microspheres for photocatalytic removal of NO. Appl Catal B 89:398–405

    Article  Google Scholar 

  • Huo Y, Zhu J, Li J, Li G, Li H (2007) An active La/TiO2 photocatalyst prepared by ultrasonication-assisted sol–gel method followed by treatment under supercritical conditions. J Mol Catal A 278:237–243. doi:10.1016/j.molcata.2007.07.054

    Article  Google Scholar 

  • Irie H, Watanabe Y, Hashimoto K (2003) Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. J Phys Chem B 107:5483–5486. doi:10.1021/jp030133h

    Article  Google Scholar 

  • Kubacka A, Bn Bachiller-Baeza, Colón G, Fernández-García M (2009) W, N-codoped TiO2-anatase: a sunlight-operated catalyst for efficient and selective aromatic hydrocarbons photo-oxidation. J Phys Chem C 113:8553–8555. doi:10.1021/jp902618g

    Article  Google Scholar 

  • Lan X, Wang L, Zhang B, Tian B, Zhang J (2014) Preparation of lanthanum and boron co-doped TiO2 by modified sol–gel method and study their photocatalytic activity. Catal Today 224:163–170. doi:10.1016/j.cattod.2013.10.062

    Article  Google Scholar 

  • Li QY, Zhang JW, Jin ZS, Yang DG, Wang XD, Yang JJ, Zhang ZJ (2006) Photo and photoelectrochemical properties of p-type low-temperature dehydrated nanotube titanic acid. Electrochem Commun 8:741–746. doi:10.1016/j.elecom.2006.03.002

    Article  Google Scholar 

  • Li QY et al (2007) n/p-Type changeable semiconductor TiO2 prepared from NTA. J Nanopart Res 9:951–957. doi:10.1007/s11051-006-9095-4

    Article  Google Scholar 

  • Park JH, Kim S, Bard AJ (2006) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6:24–28

    Article  Google Scholar 

  • Price NJ, Reitz JB, Madix RJ, Solomon E (1999) A synchrotron XPS study of the vanadia–titania system as a model for monolayer oxide catalysts. J Electron Spectrosc Relat Phenom 98:257–266

    Article  Google Scholar 

  • Sakatani Y et al (2003) Photocatalytic decomposition of acetaldehyde under visible light irradiation over La3+ and N co-doped TiO2. Chem Lett 32:1156–1157. doi:10.1246/cl.2003.1156

    Article  Google Scholar 

  • Shen Y, Xiong T, Li T, Yang K (2008) Tungsten and nitrogen co-doped TiO2 nano-powders with strong visible light response. Appl Catal B 83:177–185. doi:10.1016/j.apcatb.2008.01.037

    Article  Google Scholar 

  • Umebayashi T, Yamaki T, Tanaka S, Asai K (2003) Visible light-induced degradation of methylene blue on S-doped TiO2. Chem Lett 32:330–331

    Article  Google Scholar 

  • Wang Y, Huang Y, Ho W, Zhang L, Zou Z, Lee S (2009) Biomolecule-controlled hydrothermal synthesis of C-N-S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation. J Hazard Mater 169:77–87. doi:10.1016/j.jhazmat.2009.03.071

    Article  Google Scholar 

  • Wang Y, Feng C, Zhang M, Yang J, Zhang Z (2010) Enhanced visible light photocatalytic activity of N-doped TiO2 in relation to single-electron-trapped oxygen vacancy and doped-nitrogen. Appl Catal B 100:84–90. doi:10.1016/j.apcatb.2010.07.015

    Article  Google Scholar 

  • Wang Y, Feng C, Zhang M, Yang J, Zhang Z (2011) Visible light active N-doped TiO2 prepared from different precursors: origin of the visible light absorption and photoactivity. Appl Catal B 104:268–274. doi:10.1016/j.apcatb.2011.03.020

    Article  Google Scholar 

  • Wang X et al (2013) Ferric phosphate hydroxide microcrystals for highly efficient visible-light-driven photocatalysts. ChemPhysChem 14:2518–2524

    Article  Google Scholar 

  • Xing Y, Li R, Li Q, Yang J (2012) A new method of preparation of AgBr/TiO2 composites and investigation of their photocatalytic activity. J Nanopart Res 14:1–8. doi:10.1007/s11051-012-1284-8

    Article  Google Scholar 

  • Xu J, Ao Y, Fu D, Yuan C (2009) Synthesis of Gd-doped TiO2 nanoparticles under mild condition and their photocatalytic activity. Colloids Surf A 334:107–111

    Article  Google Scholar 

  • Yang J et al (2003) Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. Dalton Trans 20:3898–3901. doi:10.1039/b305585j

    Article  Google Scholar 

  • Zhang W, Zhang M, Yin Z, Chen Q (2000) Photoluminescence in anatase titanium dioxide nanocrystals. Appl Phys B 70:261–265

    Article  Google Scholar 

  • Zhang M et al (2004) Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2 Ti2 O4(OH)2. J Mol Catal A 217:203–210

    Article  Google Scholar 

  • Zhang J, Jin Z, Feng C, Yu L, Zhang J, Zhang Z (2011) ESR study on the visible photocatalytic mechanism of nitrogen-doped novel TiO2: synergistic effect of two kinds of oxygen vacancies. J Solid State Chem 184:3066–3073

    Article  Google Scholar 

  • Zhang M, Yu X, Lu D, Yang J (2013) Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors. Nanoscale Res Lett 8:543. doi:10.1186/1556-276X-8-543

    Article  Google Scholar 

  • Zong L, Li Q, Zhang J, Wang X, Yang J (2013) Preparation of Pd-loaded La-doped TiO2 nanotubes and investigation of their photocatalytic activity under visible light. J Nanopart Res 15:1–9. doi:10.1007/s11051-013-2042-2

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (Nos. 21103042, 21471047, 21203054), Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 15HASTIT043), and Program for Changjiang Scholars and Innovation Research Team in University (No. PCS IRT1126).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiuye Li or Jianjun Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, H., Zong, L. et al. Photocatalytic oxidation of propylene on La and N codoped TiO2 nanoparticles. J Nanopart Res 17, 114 (2015). https://doi.org/10.1007/s11051-015-2916-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2916-6

Keywords

Navigation