Skip to main content
Log in

A novel synthesis of SrCO3–SrTiO3 nanocomposites with high photocatalytic activity

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The results of the production and characterization of SrCO3–SrTiO3 nanocomposites as a promising candidate for efficient photocatalysts are reported. The production is based on a novelty route employing the solvothermal method with strontium chloride and titanium (IV) butoxide as the precursor solutions. The effect on the properties of the nanocomposites due to changes in the content of SrCO3 and SrTiO3 is reported. The as-prepared materials were tested in the photodegradation of methylene blue dye in aqueous solutions under the solar light. The reported route allows the production of SrCO3–SrTiO3 nanocomposites with particle sizes ranging between 18 and 29 nm. The SrCO3–SrTiO3 nanocomposites obtained with 19 % of SrCO3 phase and 81 % of SrTiO3 (M10) can achieve 94 and 97 % of dye photodegradation after 30 and 120 min, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Burnside S, Moser JE, Brooks K, Gratzel MJ (1999) Nanocrystalline mesoporous strontium titanate as photoelectrode material for photosensitized solar devices: increasing photovoltage through flatband potential engineering. Phys Chem B 103(43):9328–9332. doi:10.1021/jp9913867

    Article  Google Scholar 

  • Chang CH, Shen YH (2006) Synthesis and characterization of chromium doped SrTiO3 photocatalyst. Mater Lett 60:129–132. doi:10.1016/j.matlet.2005.08.005

    Article  Google Scholar 

  • Chen D, Jiao X, Zhang M (2000) Hydrothermal synthesis of strontium titanate powders with nanometer size derived from different precursors. J Eur Ceram Soc 20:1261–1265. doi:10.1016/S0955-2219(00)00003-0

    Article  Google Scholar 

  • Domen K, Kudo A, Onishi T, Kosugi N, Kuroda H (1986) Photocatalytic decomposition of water into hydrogen and oxygen over nickel(II) oxide-strontium titanate (SrTiO3) powder. 1. Structure of the catalysts. J Phys Chem 90(2):292–295. doi:10.1021/j100274a018

    Article  Google Scholar 

  • Fujinami K, Katagiri K, Kamiya J, Hamanaka T, Koumoto K (2010) Sub-10 nm strontium titanate nanocubes highly dispersed in non-polar organic solvents. Nanoscale 2:2080–2083. doi:10.1039/c0nr00543f

    Article  Google Scholar 

  • Guo J, Ouyang S, Li P, Zhang Y, Kako T, Ye J (2013) A new heterojunction Ag3PO4/Cr-SrTiO3 photocatalyst towards efficient elimination of gaseous organic pollutants under visible light irradiation. Appl Catal B 134–135:286–292. doi:10.1016/j.apcatb.2012.12.038

    Article  Google Scholar 

  • Herrmann JM (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53:115–129. doi:10.1016/S0920-5861(99)00107-8

    Article  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96. doi:10.1021/cr00033a004

    Article  Google Scholar 

  • Jia Q, Iwase A, Kudo A (2014) BiVO4–Ru/SrTiO3:Rh composite Z-scheme photocatalyst for solar water splitting. Chem Sci 5:1513–1519. doi:10.1039/C3SC52810C

    Article  Google Scholar 

  • Keis VN, Kozyrev AB, Khazov ML, Sok J, Lee JS (1998) 20 GHz tunable filter based on ferroelectric (Ba, Sr)TiO3 films. Electron Lett 34:1107–1109. doi:10.1049/el:19980784

    Article  Google Scholar 

  • Kirchoefer SW, Pond JM, Carter AC, Chang W, Agarwal KK, Horwitz JS, Chrisey DB (1998) Microwave properties of Sr0.5Ba0.5TiO3 thin-film interdigitated capacitors. Microw Opt Technol Lett 18:168–171.

  • Leite ER, Nobre MAL, Cerqueira M, Longo E (1997) Particle growth during calcination of polycation oxides synthesized by the polymeric precursors method. J Am Ceram Soc 80:2649–2657. doi:10.1111/j.1151-2916.1997.tb03167.x

    Article  Google Scholar 

  • Liu JW, Chen G, Li ZH, Zhang ZG (2006) Electronic structure and visible light photocatalysis water splitting property of chromium-doped SrTiO3. J Solid State Chem 179:3704–3708. doi:10.1016/j.jssc.2006.08.014

    Article  Google Scholar 

  • Ludman CJ, Waddington TC (1966) The methoxide ion in anhydrous methanol as a Lewis base. J Chem Soc A. doi:10.1039/J19660001816

    Google Scholar 

  • Marcus Y, Glikberg S (1985) Recommended methods for the purification of solvents and tests for impurities methanol and ethanol. Pure Appl Chem 57(6):855–864. doi:10.1351/pac198557060855

    Article  Google Scholar 

  • Márquez-Herrera A, Ovando-Medina VM, Corona-Rivera MA, Hernández-Rodríguez E, Zapata-Torres M, Campos-González E, Guillen-Cervantes A, Zelaya-Ángel O, Meléndez-Lira M (2013) A novel solvothermal route for obtaining strontium titanate nanoparticles. J Nanoparticle Res 15:1–7. doi:10.1007/s11051-013-1525-5

    Article  Google Scholar 

  • Matos J, Garcia A, Zhao L, Magdalena-Titirici M (2010) Solvothermal carbon-doped TiO2 photocatalyst for the enhanced methylene blue degradation under visible light. Appl Catal A 390:175–182. doi:10.1016/j.apcata.2010.10.009

    Article  Google Scholar 

  • Naumkin AV, Kraut-Vass A, Gaarenstroom SW, Powell CJ (2012) NIST X-ray photoelectron spectroscopy database, Version 4.1. National Institute of Standards and Technology, Gaithersburg. http://srdata.nist.gov/xps/. Accessed 21 Jan 2014

  • Nishiro R, Tanaka S, Kudo A (2014) Hydrothermal-synthesized SrTiO3 photocatalyst codoped with rhodium and antimony with visible-light response for sacrificial H2 and O2 evolution and application to overall water splitting. Appl Catal B 150–151:187–196. doi:10.1016/j.apcatb.2013.12.015

    Article  Google Scholar 

  • Ouyang S, Tong H, Umezawa N, Cao J, Li P, Bi Y, Zhang Y, Ye J (2012) Surface alkalinization induced enhancement of photocatalytic H2 evolution over SrTiO3 based photocatalysts. J Am Chem Soc 134:1974–1977. doi:10.1021/ja210610h

    Article  Google Scholar 

  • Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B: Condens Matter 192:55–69. doi:10.1016/0921-4526(93)90108-I

    Article  Google Scholar 

  • Ronzio AR, Cook WB (1944) 4-amino-2, 6-dimethylpyrimidine [pyrimidine, 4-amino-2,6-dimethyl-]. Org Synth 24:6. doi:10.15227/orgsyn.024.0006

    Article  Google Scholar 

  • Shen S, Jia Y, Fan F, Feng Z, Li C (2013) Time-resolved infrared spectroscopic investigation of roles of valence states of Cr in (La, Cr)-doped SrTiO3 photocatalysts. Chin J Catal 34:2036–2040. doi:10.1016/S1872-2067(12)60702-5

    Article  Google Scholar 

  • Shi L, Pei C, Li Q (2010) Ordered arrays of shape tunable CulnS2 nanostrutures, from nanotubes to nano test tubes and nanowires. Nanoscale 2:2126–2130. doi:10.1039/c0nr00341g

    Article  Google Scholar 

  • Shi L, Pei C, Xu Y, Li Q (2011) Template-directed synthesis of ordered single-crystalline nanowires arrays of Cu2ZnSnS4 and Cu2ZnSnSe4. J Am Chem Soc 133:10328–10331. doi:10.1021/ja201740w

    Article  Google Scholar 

  • Subramanian V, Roeder RK, Wolf EE (2006) Synthesis and UV–Visible-light photoactivity of noble-metal-SrTiO3 composites. Ind Eng Chem Res 45:2187–2193. doi:10.1021/ie050693y

    Article  Google Scholar 

  • Sulaeman U, Yin S, Suehiro T, Sato T (2009) Solvothermal synthesis of SrTiO3-LnTiO2N solid solution and their visible light responsive photocatalytic properties. IOP Conf Ser: Mater Sci Eng 1:012017. doi:10.1088/1757-8981/1/1/012017

    Article  Google Scholar 

  • Turova NY, Turevskaya EP, Kessler VG, Yanovskaya MI (2002) The chemistry of metal alkoxides. Kluwer Academic Publishers, New York

    Google Scholar 

  • Ueda M, Otsuka-Yao-Matsuo S (2004) Preparation of tabular TiO2–SrTiO3-δ composite for photocatalytic electrode. Sci Technol Adv Mater 5:187–193. doi:10.1016/j.stam.2003.09.012

    Article  Google Scholar 

  • Wang J, Yin S, Komatsu M, Zhang Q, Saito F, Sato T (2004) Preparation and characterization of nitrogen doped SrTiO3 photocatalyst. J Photochem Photobiol A: Chem 165:149–156. doi:10.1016/j.jphotochem.2004.02.022

    Article  Google Scholar 

  • Wrighton MS, Ellis AB, Wolczanski PT, Morse DL, Abrahamson HB, Ginley DS (1976) Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential. J Am Chem Soc 98(10):2774–2779. doi:10.1021/ja00426a017

    Article  Google Scholar 

  • Xie TH, Sun X, Lin J (2008) Enhanced photocatalytic degradation of RhB driven by visible light-induced MMCT of Ti(IV)–O–Fe(II) formed in Fe-doped SrTiO3. J Phys Chem C 112(26):9753–9759. doi:10.1021/jp711797a

    Article  Google Scholar 

  • Zapata-Navarro A, Márquez-Herrera A, Cruz-Jáuregui MP, Calzada ML (2005) Ferroelectric properties of barium strontium titanate thin films grown by RF co-sputtering. Phys Status Solidi 2:3673. doi:10.1002/pssc.200461712

    Article  Google Scholar 

  • Zhang H, Wu X, Wang Y, Chen X, Li Z, Yu T, Ye J, Zou Z (2007) Preparation of Fe2O3/SrTiO3 composite powders and their photocatalytic properties. J Phys Chem Solids 68:280–283. doi:10.1016/j.jpcs.2006.11.007

    Article  Google Scholar 

  • Zhang J, Xiong Z, Zhao XS (2011a) Graphene–metal–oxide composites for the degradation of dyes under visible light irradiation. J Mater Chem 21:3634–3640. doi:10.1039/C0JM03827J

    Article  Google Scholar 

  • Zhang L, Holt CMB, Luber EJ, Olsen BC, Wang H, Danaie M, Cui X, Tan X, Lui VW, Kalisvaart WP, Mitlin D (2011b) High rate electrochemical capacitors from three-dimensional arrays of vanadium nitride functionalized carbon nanotubes. J Phys Chem C 115(49):24381–24393. doi:10.1021/jp205052f

    Article  Google Scholar 

  • Zhang S, Liu J, Han Y, Chen B, Li X (2004) Formation mechanisms of SrTiO3 nanoparticles under hydrothermal conditions. J Mater Sci Eng B 110:11–17. doi:10.1016/j.mseb.2004.01.017

    Article  Google Scholar 

  • Zielinska B, Morawski AW (2005) TiO2 photocatalysts promoted by alkali metals. Appl Catal B: Environ 55:221–226. doi:10.1016/j.apcatb.2004.08.015

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Projects CB2010/165968 and CB2010/154857 from CONACYT. Diffuse reflectance, BET, and XPS measurements were performed at LANNBIO Cinvestav Mérida, under support from Projects FOMIX-Yucatán 2008-108160, CONACYT LAB-2009-01 No. 123913 and CB2012/178947. The Technical support from Ing. W. Cahuich, J. Bante, M. Guerrero, A. Guillen-Cervantes, R. Fragoso-Soriano, L. Lopez, D. Perez-Escamilla and L. Hernández-Hernández is acknowledged. M. Zapata Torres thanks the hospitality of Dr. Peña Chapa at the sabbatical leave in CINVESTAV-IPN, Unidad Merida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Márquez-Herrera.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 197 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Márquez-Herrera, A., Ovando-Medina, V.M., Castillo-Reyes, B.E. et al. A novel synthesis of SrCO3–SrTiO3 nanocomposites with high photocatalytic activity. J Nanopart Res 16, 2804 (2014). https://doi.org/10.1007/s11051-014-2804-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2804-5

Keywords

Navigation