Skip to main content
Log in

Copper nanoparticles synthesized by thermal decomposition in liquid phase: the influence of capping ligands on the synthesis and bactericidal activity

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We explored here the synthesis of copper nanoparticles (CuNPs) by thermal decomposition of copper(II) acetate in diphenyl ether in the presence of different capping ligands. To look for any specific role in thermal decomposition, we performed reactions in the presence of oleic acid, oleylamine, and 1,2-octanediol, or in the presence of different combinations of these capping ligands, or in the absence of them. The CuNPs obtained in the presence of oleic acid and oleylamine (in the presence or absence of 1,2-octanediol) were stabilized as Cu(0) NPs, and the “naked” NPs prepared in solvent only easily oxidized to CuO. Therefore, both oleic acid and oleylamine can act as capping ligands to prepare air-stable Cu(0) NPs. The 1,2-alkyldiol is not necessary for metal reduction during the synthesis, but its presence improves size and morphology control. The presence of capping ligands significantly reduced the bactericidal activity exhibited by the Cu NPs against the gram-negative bacteria Escherichia coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  Google Scholar 

  • Avery SV, Howlett NG, Radice S (1996) Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition. Appl Environ Microbiol 62:3960–3966

    Google Scholar 

  • Bao N, Shen L, Wang Y, Padhan P, Gupta A (2007) A facile thermolysis route to monodisperse ferrite nanocrystals. J Am Chem Soc 129:12374–12375

    Article  Google Scholar 

  • Borel J-P (1981) Thermodynamical size effect and the structure of metallic clusters. Surf Sci 106:1–9

    Article  Google Scholar 

  • Chen S, Sommers JM (2001) Alkanethiolate-protected copper nanoparticles: spectroscopy, electrochemistry, and solid-state morphological evolution. J Phys Chem B 105:8816–8820

    Article  Google Scholar 

  • Chen X, Tian X, Shin I, Yoon J (2011) Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev 40:4783–4804

    Article  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L (2005) Copper nanoparticles/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262

    Article  Google Scholar 

  • Crouse CA, Barron AR (2008) Reagent control over the size, uniformity, and composition of Co-Fe-O nanoparticles. J Mater Chem 18:4146–4153

    Article  Google Scholar 

  • Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  Google Scholar 

  • Dhas NA, Raj CP, Gedanken A (1998) Synthesis, characterization, and properties of metallic copper nanoparticles. Chem Mater 10:1446–1452

    Article  Google Scholar 

  • Gamerith S, Klug A, Scheiber H, Scherf U, Moderegger E, List EJ (2007) Direct ink-jet printing of Ag–Cu nanoparticle and Ag-precursor based electrodes for OFET applications. Adv Funct Mater 17:3111–3118

    Article  Google Scholar 

  • Hiramatsu H, Osterloh FE (2004) A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem Mater 16:2509–2511

    Article  Google Scholar 

  • Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1:482–501

    Article  Google Scholar 

  • Jeong S et al (2008) Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing. Adv Funct Mater 18:679–686

    Article  Google Scholar 

  • Kawasaki H, Kosaka Y, Myoujin Y, Narushima T, Yonezawa T, Arakawa R (2011) Microwave-assisted polyol synthesis of copper nanocrystals without using additional protective agents. Chem Commun 47:7740–7742

    Article  Google Scholar 

  • Kent PD, Mondloch JE, Finke RG (2014) A four-step mechanism for the formation of supported-nanoparticle heterogenous catalysts in contact with solution: the conversion of Ir(1,5-COD)Cl/γ-Al2O3 to Ir(0)(~170)/γ-Al2O3. J Am Chem Soc 136:1930–1941

  • Lee Y, J-r Choi, Lee KJ, Stott NE, Kim D (2008) Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology 19:415604

    Article  Google Scholar 

  • Lima E Jr et al (2009) Single-step chemical synthesis of ferrite hollow nanospheres. Nanotechnology 20:045606

    Article  Google Scholar 

  • Lisiecki I, Sack-Kongehl H, Weiss K, Urban J, Pileni M-P (2000) Annealing process of anisotropic copper nanocrystals. 1. Cylinders Langmuir 16:8802–8806

    Article  Google Scholar 

  • Liu X, Atwater M, Wang J, Dai Q, Zou J, Brennan JP, Huo Q (2007) A study on gold nanoparticle synthesis using oleylamine as both reducing agent and protecting ligand. J Nanosci Nanotechnol 7:3126–3133

    Article  Google Scholar 

  • Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  Google Scholar 

  • Matsumoto T, Fujii H, Ueda T, Kamai M, Nogi K (2005) Measurement of surface tension of molten copper using the free-fall oscillating drop method. Meas Sci Technol 16:432

    Article  Google Scholar 

  • Mitsudome T, Mikami Y, Ebata K, Mizugaki T, Jitsukawa K, Kaneda K (2008) Copper nanoparticles on hydrotalcite as a heterogeneous catalyst for oxidant-free dehydrogenation of alcohols. Chem Commun 39:4804–4806

    Article  Google Scholar 

  • Mott D, Galkowski J, Wang L, Luo J, Zhong C-J (2007) Synthesis of size-controlled and shaped copper nanoparticles. Langmuir 23:5740–5745

    Article  Google Scholar 

  • Mott D et al (2009) From ultrafine thiolate-capped copper nanoclusters toward copper sulfide nanodiscs: a thermally activated evolution route. Chem Mater 22:261–271

    Article  Google Scholar 

  • Murray CB, Kagan C, Bawendi M (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610

    Article  Google Scholar 

  • Nagaraju G, Ebeling G, Gonçalves RV, Teixeira SR, Weibel DE, Dupont J (2013) Controlled growth of TiO2 and TiO2–RGO composite nanoparticles in ionic liquids for enhanced photocatalytic H2 generation. J Mol Catal A: Chem 378:213–220

    Article  Google Scholar 

  • Park J et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895

    Article  Google Scholar 

  • Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angewandte Chemie-Int Ed 46:4630–4660

    Article  Google Scholar 

  • Raffi M, Mehrwan S, Bhatti TM, Akter JI, Hameed A, Yawar W, Hasan M (2010) Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbiol 60:75–80

    Article  Google Scholar 

  • Roucoux A, Schulz J, Patin H (2002) Reduced transition metal colloids: a novel family of reusable catalysts? Chem Rev 102:3757–3778

    Article  Google Scholar 

  • Schmid G (1992) Large clusters and colloids. Metals in the embryonic state. Chem Rev 92:1709–1727

  • Sun SH, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205

    Article  Google Scholar 

  • Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992

    Article  Google Scholar 

  • Wang X, Zhuang J, Peng Q, Li Y (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124

    Article  Google Scholar 

  • Wang C, Daimon H, Lee Y, Kim J, Sun S (2007) Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction. J Am Chem Soc 129:6974–6975

    Article  Google Scholar 

  • Wei Y, Chen S, Kowalczyk B, Huda S, Gray TP, Grzybowski BA (2010) Synthesis of stable, low-dispersity copper nanoparticles and nanorods and their antifungal and catalytic properties. J Phys Chem C 114:15612–15616

    Article  Google Scholar 

  • Woo K, Kim D, Kim JS, Lim S, Moon J (2008) Ink-Jet printing of Cu—Ag-based highly conductive tracks on a transparent substrate. Langmuir 25:429–433

    Article  Google Scholar 

  • Xu Z, Shen C, Hou Y, Gao H, Sun S (2009) Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem Mater 21:1778–1780

    Article  Google Scholar 

  • Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437:664–670

    Article  Google Scholar 

  • Zhu H, Zhang C, Yin Y (2005) Novel synthesis of copper nanoparticles: influence of the synthesis conditions on the particle size. Nanotechnology 16:3079

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Brazilian agencies FAPESP and CNPq for financial support. We also thank Prof. Ana Maria Ferreira (Instituto de Química, Universidade de São Paulo) for TG-MS measurements (FAPESP Grant 05/60596-8). MTM and LMR are members of the NAPCatSinQ-USP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liane M. Rossi.

Additional information

Guest Editors: Carlos Lodeiro Espiño, José Luis Capelo Martinez

This article is part of the topical collection on Composite Nanoparticles

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Effenberger, F.B., Sulca, M.A., Machini, M.T. et al. Copper nanoparticles synthesized by thermal decomposition in liquid phase: the influence of capping ligands on the synthesis and bactericidal activity. J Nanopart Res 16, 2588 (2014). https://doi.org/10.1007/s11051-014-2588-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2588-7

Keywords

Navigation