Skip to main content
Log in

Nanoscience and nanotechnologies in food industries: opportunities and research trends

Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanomaterials have gained importance in various fields of science, technology, medicine, colloid technologies, diagnostics, drug delivery, personal care applications and others due to their small size and unique physico-chemical characteristic. Apart from above mentioned area, it is also extensively being used in food sector specifically in preservation and packaging. The future applications in food can also be extended to improve the shelf life, food quality, safety, fortification and biosensors for contaminated or spoiled food or food packaging. Different types and shapes of nanomaterials are being employed depending upon the need and nature of the food. Characterisation of these nanomaterials is essential to understand the interaction with the food matrix and also with biological compartment. This review is focused on application of nanotechnology in food industries. It also gives insight on commercial products in market with usage of nanomaterials, current research and future aspects in these areas. Currently, they are being incorporated into commercial products at a faster rate than the development of knowledge and regulations to mitigate potential health and environmental impacts associated with their manufacturing, application and disposal. As nanomaterials are finding new application every day, care should be taken about their potential toxic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acosta E (2009) Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 14(1):3–15

    Google Scholar 

  • Adame D, Beall GW (2009) Direct measurement of the constrained polymer region inpolyamide/clay nanocomposites and the implications for gas diffusion. Appl Clay Sci 42:545–552

    Google Scholar 

  • Ahuja T, Mir IA, Kumar D, Rajesh (2007) Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 28:791–805

    Google Scholar 

  • Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R 28:1–63

    Google Scholar 

  • Alexandre B, Langevin D, Médéric P, Aubry T, Couderc H, Nguyen QT, Saiter A, Marais S (2009) Water barrier properties of polyamide 12/montmorillonitenanocomposite membranes: structure and volume fraction effects. J Memb Sci 328(1–2):186–204

    Google Scholar 

  • Amagliani G, Omiccioli E, del Campo A, Bruce IJ, Brandi G, Magnani M (2006) Development of a magnetic capture hybridization-PCR assay for Listeria monocytogenes direct detection in milk samples. J Appl Microbiol 100:375–383

    Google Scholar 

  • Ankola DD, Viswanad B, Bhardwaj V, Ramarao P, Kumar MN (2007) Development of potent oral nanoparticulate formulation of coenzyme Q10 for treatment of hypertension: can the simple nutritional supplements be used as first line therapeutic agents for prophylaxis/therapy? Eur J Pharm Biopharm 67:361–369

    Google Scholar 

  • Anpo M, Kishiguchi S, Ichihashi Y, Takeuchi M, Yamashita H, Ikeue K, Morin B, Davidson A, Che M (2001) The design and development of second-generation titanium oxide photocatalysts able to operate under visible light irradiation by applying a metal ion-implantation method. Res Chem Intermed 27(4–5):459–467

    Google Scholar 

  • Anton N, Benoit JP, Saulnier P (2008) Design and production of nanoparticles formulated from nano-emulsion templates—a review. J Control Release 128:185–199

    Google Scholar 

  • Arora A, Padua GW (2010) Review: nanocomposites in food packaging. J Food Sci 75:R43–R49

    Google Scholar 

  • Arshak K, Adley C, Moore E, Cunniffe C, Campion M, Harris J (2007) Characterisation of polymer nanocomposite sensors for quantification of bacterial cultures. Sens Actuators B 126:226–231

    Google Scholar 

  • Astete CE, Sabliov CM, Watanabe F, Biris A (2009) Ca2+ cross-linked alginic acid nanoparticles for solubilization of lipophilic natural colorants. J Agric Food Chem 57:7505–7512

    Google Scholar 

  • Azizi SMAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Google Scholar 

  • Beyer PL, Jach TE, Zak DL, Jerome RA, Debrincat FP (1996) Edible products having inorganic coatings. US patent 5741505

  • Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C, ten Voorde SE, Wijnhoven SW, Marvin HJ, Sips AJ (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52–62

    Google Scholar 

  • Brody AL, Bugusu B, Han JH, Sand CK, McHugh TH (2008) Innovative food packaging solutions. J Food Sci 73:R107–R116

    Google Scholar 

  • Bugusu B, Lay-Ma UV, Floros JO (2011) Products and their commercialization. In: Frewer LJ, Norde W, Fisher A, Kampers F (eds) Nanotechnology in the agri-food sector—implications for the future. Wiley-VCH, Weinheim, pp 149–170

    Google Scholar 

  • Carla ML, José RF, Paula ML (2013) Application of nanotechnology in the agro-food sector. Food Technol Biotechnol 51:183–197

    Google Scholar 

  • Carretero MI, Pozo M (2009) Clay and non-clay minerals in the pharmaceutical industry: part I. Excipients and medical applications. Appl Clay Sci 46:73–80

    Google Scholar 

  • Center for Biological Nanotechnology (2001) http://www.vitamincity.com/umichnanobio.htm. Accessed 01 Dec 2013

  • Chaudhry Q, Groves K (2010) Nanotechnology Applications for Food Ingredients, Additives and Supplements. In: Chaudhry Q, Castle L, Watkins R (eds) Nanotechnologies in Food. RSC Publishing, Cambridge, pp 69–85

    Google Scholar 

  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L et al (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam A 25:241–258

    Google Scholar 

  • Chawengkijwanich C, Hayata Y (2008) Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int J Food Microbiol 123(3):288–292

    Google Scholar 

  • Chen B, Evans JRG (2005) Thermoplastic starch–clay nanocomposites and their characteristics. Carbohydr Polym 61:455–463

    Google Scholar 

  • Chen L, Subirade M (2005) Chitosan/β-lactoglobulin core–shell nanoparticles as nutraceutical carriers. Biomaterials 26:6041–6053

    Google Scholar 

  • Chen HD, Weiss JC, Shahidi F (2006) Nanotechnology in nutraceuticals and functional foods. Food Technol 60:30–36

    Google Scholar 

  • Chen YC, Yu SH, Tsai GJ, Tang DW, Mi FL, Peng YP (2010) Novel technology for the preparation of self-assembled catechin/gelatin nanoparticles and their characterization. J Agric Food Chem 58:6728–6734

    Google Scholar 

  • Cheng Q, Li C, Pavlinek V, Saha P, Wang H (2006) Surface-modified antibacterial TiO2/Ag+ nanoparticles: preparation and properties. Appl Surf Sci 252:4154–4160

    Google Scholar 

  • Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum size TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679

    Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-zacheo T, D’alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262

    Google Scholar 

  • Cissé M, Vaillant F, Pallet D, Dornier M (2011) Selecting ultrafiltration and nanofiltration membranes to concentrate anthocyanins from roselle extract (Hibiscus sabdariffa L.). Food Res Int 44:2607–2614

    Google Scholar 

  • Cuartas-Uribe B, Alcaina-Miranda MI, Soriano-Costa E, Bes-Pia A (2007) Comparison of the behavior of two nanofiltration membranes for sweet whey demineralization. J Dairy Sci 90:1094–1101

    Google Scholar 

  • Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2012) Nanotechnologies in the food industry—recent developments, risks and regulation. Trends Food Sci Technol 24:30–46

    Google Scholar 

  • Cushing BL, Vladimir LK, Charles JO (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946

    Google Scholar 

  • Cyras VP, Manfredi LB, Ton-that MT, Vázquez A (2008) Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohydr Polym 73:55–63

    Google Scholar 

  • Dalmas F, Cavaillé JY, Gauthier C, Chazeau L, Dendievel R (2007) Viscoelastic behavior and electrical properties of flexible nanofiber filled polymer nanocomposites. Influence of processing conditions. Compos Sci Technol 67:829–839

    Google Scholar 

  • Danie KJ, Shivendu R, Nandita D, Proud S (2013) Nanotechnology for tissue engineering: need, techniques and applications. J Pharm Res 7(2):200–204

    Google Scholar 

  • Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C (2012) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6(3):628–647

    Google Scholar 

  • Fernández A, Cava D, Ocio MJ, Lagaron JM (2008) Perspectives for biocatalysts in food packaging. Trends Food Sci Technol 19(4):198–206

    Google Scholar 

  • Flanagan J, Singh H (2006) Microemulsions: a potential delivery system for bioactives in food. Crit Rev Food Sci Nutr 46:221–237

    Google Scholar 

  • Food Safety Authority of Ireland (2008) The relevance for food safety of applications of nanotechnology in the food and feed industries. http://www.fsai.ie/WorkArea/DownloadAsset.aspx?id=7858. Accessed 1 Dec 2013

  • Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1(1):1–21

    Google Scholar 

  • Garcia-Castello E, Cassano A, Criscuoli A, Conidi C, Drioli E (2010) Recovery and concentration of polyphenols from olive mil wastewaters by integrated membrane system. Water Res 44:3883–3892

    Google Scholar 

  • Garrido-Ramirez EG, Theng BKG, Mora ML (2010) Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions—a review. Appl Clay Sci 47:182–192

    Google Scholar 

  • Garti N, Aserin A (2005) Microemulsions for solubilization and delivery of nutraceuticals and drugs. In: Benita S (ed) Microencapsulation: methods and industrial applications, drugs and the pharmaceutical sciences, vol 158. CRC Press, Taylor and Francis, Boca Raton, pp 345–428

    Google Scholar 

  • Gelover S, Gómez LA, Reyes K, Leal MT (2006) A practical demonstration of water disinfection using TiO2 films and sunlight. Water Res 40:3274–3280

    Google Scholar 

  • Goettler L, Lee K, Thakkar H (2007) Layered silicate reinforced polymer nanocomposites: development and applications. Polym Rev 47:291–317

    Google Scholar 

  • Gopinath S, Sugunan S (2007) Enzymes immobilized on montmorillonite K 10: effect of adsorption and grafting on the surface properties and the enzyme activity. Appl Clay Sci 35(1–2):67–75

    Google Scholar 

  • Graveland-Bikker JF, De Kruif CG (2006) Unique milk protein based nanotubes: food and nanotechnology meet. Trends Food Sci Technol 17:196–203

    Google Scholar 

  • Green RJ, Murphy AS, Schulz B, Watkins BA, Ferruzzi MG (2007) Common tea formulations modulate in vitro digestive recovery of green tea catechins. Mol Nutr Food Res 51:1152–1162

    Google Scholar 

  • Gruère G, Narrod C, Abbott L (2011) Agriculture, food, and water nanotechnologies for the poor opportunities and constraints policy Brief 19, June 2011. International Food Policy Research Institute (IFPRI), Washington, DC. http://www.ifpri.org/sites/default/files/publications/ifpridp01064.pdf Accessed 05 Dec 2013

  • Gu HW, Ho PL, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3:1261–1263

    Google Scholar 

  • Gu L, Luo PG, Wang H, Meziani MJ, Lin Y, Veca LM, Cao L, Lu F, Wang X, Quinn RA, Wang W, Zhang P, Lacher S, Sun YP (2008) Single-walled carbon nanotube as a unique scaffold for the multivalent display of sugars. Biomacromolecules 9:2408–2418

    Google Scholar 

  • Gutiérrez-Tauste D, Domènech X, Casañ-Pastor N, Ayllón JA (2007) Characterization of methylene blue/TiO2 hybrid thin films prepared by the liquid phase deposition (LPD) method: application for fabrication of light-activated colorimetric oxygen indicators. J Photochem Photobiol A 187:45–52

    Google Scholar 

  • Halliday J (2007) EFSA opens the floor on nanotechnology. http://www.foodnavigator.com/Financial-Industry/EFSA-opens-the-floor-on-nanotechnology. Accessed 28 Nov 2013

  • Hebbar UH, Raghavarao KSMS (2007) Extraction of bovine serum albumin using nanoparticulate reverse micelles. Process Biochem 42:1602–1608

    Google Scholar 

  • Helbert W, Cavaillé CY, Dufresne A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behaviour. Polym Compos 17(4):604–611

    Google Scholar 

  • Hench LL, West JK (1990) The sol–gel process. Chem Rev 90:33–72

    Google Scholar 

  • Hentschel A, Gramdorf S, Muller RH, Kurz T (2008) β-Carotene loaded nanostructured lipid carriers. J Food Sci 73:N1–N6

    Google Scholar 

  • Hu B, Pan C, Sun Y, Hou Z, Ye H, Zeng X (2008) Optimization of fabrication parameters to produce chitosan–tripolyphosphate nanoparticles for delivery of tea catechins. J Agric Food Chem 56:7451–7458

    Google Scholar 

  • Huang L, Li DQ, Lin YJ, Wei M, Evans DG, Duan X (2005) Controllable preparation of nano-MgO and investigation of its bactericidal properties. J Inorg Biochem 99:986–993

    Google Scholar 

  • Huang Q, Yu H, Ru Q (2010) Bioavailability and delivery of nutraceuticals using nanotechnology. J Food Sci 75(1):R50–R57

    Google Scholar 

  • Jesorka A, Orwar O (2008) Liposomes: technologies and analytical applications. Annu Rev Anal Chem 1:801–832

    Google Scholar 

  • Jia X, Li Y, Cheng Q, Zhang S, Zhang B (2007) Preparation and properties of poly(vinyl alcohol)/silica nanocomposites derived from copolymerization of vinyl silica nanoparticles and vinyl acetate. Eur Polym J 43:1123–1131

    Google Scholar 

  • Johnston CT (2010) Probing the nanoscale architecture of clay minerals. Clay Miner 45(3):245–279

    Google Scholar 

  • Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I (2005) Experimental trends in polymer nanocomposites––a review. Mater Sci Eng A 393(1–2):1–11

    Google Scholar 

  • Joseph T, Morrison M (2006) Nanotechnology in agriculture and food: a nanoforum report. Institute of Nanotechnology. http://www.nanoforum.org. Accessed 5 Feb 2013

  • Jun SK, Eunye K, Kyeong NY, Jong-Ho K, Sung JP, Hu JL, So HK, Young KP, Yong HP, Cheol-Yong H, Yong-Kwon K, Yoon-Sik L, Dae HJ, Myung-Haing C (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol 3:95–101

    Google Scholar 

  • Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673

    Google Scholar 

  • Kazner C, Wintgens T, Melin T, Baghoth S, Sharma S, Amy G (2008) Comparing the effluent organic matter removal of direct NF and powdered activated carbon/NF as high quality pretreatment options for artificial groundwater recharge. Water Sci Technol 57:821–827

    Google Scholar 

  • Kiaune L, Singhasemanon N (2011) Pesticidal copper (I) oxide: environmental fate and aquatic toxicity. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 213. Springer, Cham

    Google Scholar 

  • Kim JY, Il Han S, Hong S (2008) Effect of modified carbon nanotube on the properties of aromatic polyester nanocomposites. Polymer 49:3335–3345

    Google Scholar 

  • Kinemuchi Y, Keiichi M, Channalong S, Chu-Hyun C, Hisayuki S, Weihua J, Kiyoshi Y (2003) Nanosize powders of aluminum nitride synthesized by pulsed wire discharge. J Am Ceram Soc 86:420–424

    Google Scholar 

  • Kriegel C, Arrechi A, Kit K, McClements DJ, Weiss J (2008) Fabrication, functionalization, and application of electrospun bipolymer nanofibers. Crit Rev Food Sci 48:775–797

    Google Scholar 

  • Kumar R, Münstedt H (2005) Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26:2081–2088

    Google Scholar 

  • Kvítek L, Panáček A, Soukupová J, Kolář M, Večeřová R, Prucek R, Holecová M, Zbořil R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112(15):5825–5834

    Google Scholar 

  • Lagaron JM, Catalá R, Gavara R (2004) Structural characteristics defining high barrier polymeric materials. Mater Sci Technol 20:1–7

    Google Scholar 

  • Lan T, Bayer G (2011) Introduction to flame retardancy of polymer–clay nanocomposites. In: Mittal V (ed) Thermally stable and flame retardant polymer nanocomposites. Cambridge University Press, Cambridge, pp 161–185

    Google Scholar 

  • Lavie CJ, Milani RV, Mehra MR, Ventura HO (2009) Omega-3 polyunsaturated fatty acids and cardiovascular diseases. J Am Coll Cardiol 54:585–594

    Google Scholar 

  • Lee SK, Sheridan M, Mills A (2005) Novel UV-activated colorimetric oxygen indicator. Chem Mater 17(10):2744–2751

    Google Scholar 

  • Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65:259–269

    Google Scholar 

  • Li H, Zhao X, Ma Y, Zhai G, Li L, Lou H (2008a) Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release 346:160–168

    Google Scholar 

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008b) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602

    Google Scholar 

  • Li H, Li F, Wang L, Sheng J, Xin Z, Zhao L, Xiao H, Zheng Y, Hu Q (2009) Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd). Food Chem 114(2):547–552

    Google Scholar 

  • Liao F, Chen C, Subramanian V (2005) Organic TFTs as gas sensors for electronic nose applications. Sens Actuators B 107(2):849–855

    Google Scholar 

  • Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25:279–283

    Google Scholar 

  • Limpens J, Schröder FH, de Ridder CM, Bolder CA, Wildhagen MF, Obermüller-Jevic UC et al (2006) Combined lycopene and vitamin E treatment suppresses the growth of PC-346C human prostate cancer cells in nude mice. J Nutr 136:1287–1293

    Google Scholar 

  • Lisha KP, Pradeep T (2009) Enhanced visual detection of pesticides using gold nanoparticles. J Environ Sci Health B 44:697–705

    Google Scholar 

  • Lopez-Rubio A, Gavara R, Lagaron JM (2006) Bioactive packaging: turning foods into healthier foods through biomaterials. Trends Food Sci Technol 17:567–575

    Google Scholar 

  • Lord JB (2008) The food industry in the United States. In: Brody AL, Lord JB (eds) Developing new food products for a changing marketplace. CRS, Boca Raton, pp 1–23

    Google Scholar 

  • Ludueña LN, Alvarez VA, Vasquez A (2007) Processing and microstructure of PCL/clay nanocomposites. Mater Sci Eng A 460–461:121–129

    Google Scholar 

  • Luo PG, Stutzenberger FJ (2008) Nanotechnology in the detection and control of microorganisms. Adv Appl Microbiol 63:145–181

    Google Scholar 

  • Maciejewski M, Brunner TJ, Loher SF, Stark WJ, Baiker A (2008) Phase transitions in amorphous calcium phosphates with different Ca/P ratios. Thermochim Acta 468:75–80

    Google Scholar 

  • Maherani B, Arab-Tehrany E, Kheirolomoom A, Cleymand F, Linder M (2012) Influence of lipid composition on physicochemical properties of nanoliposomes encapsulating natural dipeptide antioxidant l-carnosine. Food Chem 134:632–640

    Google Scholar 

  • Malinin AV, Zanishevskaja AA, Tuchin VV, Skibina YS, Silokhin IY (2012) Photonic crystal fibers for food quality analysis. In: Popp J, Drexler W, Tuchin VV, Matthews DL (eds) Biophotonics: photonic solutions for better health care, III, Proceedings of SPIE, vol 8427. SPIE, Bellingham

    Google Scholar 

  • Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65(9):4094–4098

    Google Scholar 

  • Mascheroni E, Capretti G, Marengo M, Iametti S, Mora L, Piergiovanni L, Bonomi F (2010) Modification of cellulose-based packaging materials for enzyme immobilization. Packag Technol Sci 23:47–57

    Google Scholar 

  • Mattoso LHC, Medeiros ES, Baker AD, Avloni J, Wood DF, Orts WJ (2009) Electrically conductive nanocomposites made from cellulose nanofibrils and polyaniline. J Nanosci Nanotechnol 9:2917–2922

    Google Scholar 

  • McClements DJ, Decker EA, Park Y, Weiss J (2009) Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit Rev Food Sci Nutr 49(6):577–606

    Google Scholar 

  • Mills A, Hazafy D (2009) Nanocrystalline SnO2-based, UVB-activated, colourimetric oxygen indicator. Sens Actuators B 136(2):344–349

    Google Scholar 

  • Mills A, Doyle G, Peiro AM, Durrant J (2006) Demonstration of a novel, flexible, photocatalytic oxygen-scavenging polymer film. J Photochem Photobiol A 177:328–331

    Google Scholar 

  • Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155(13):377–384

    Google Scholar 

  • Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385:113–142

    Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Google Scholar 

  • Morris VJ (2006) Nanotechnology and its future in new product development. J Inst Food Sci Technol 20(3):15–17

    Google Scholar 

  • Mössinger D, Hornung J, Lei S, De Feyter S, Höger S (2007) Molecularly defined shape-persistent 2D oligomers: the covalent-template approach to molecular spoked wheels. Angew Chem Int Ed 46:6802–6806

    Google Scholar 

  • Motlagh NV, Mosavian MTH, Mortazavi SA, Tamizi A (2012) Beneficial effects of polyethylene packages containing micrometer-sized silver particles on the quality and shelf life of dried barberry (Berberis vulgaris). J Food Sci 77:E2–E9

    Google Scholar 

  • Mozafari MR, Flanagan J, Matia-Merino L, Awati A, Omri A, Suntres ZE, Singh H (2006) Recent trends in the lipid-based nanoencapsulation of antioxidants and their role in foods. J Sci Food Agric 86:2038–2045

    Google Scholar 

  • Mozafari MR, Johnson C, Hatziantoniou S, Demetzos C (2008) Nanoliposomes and their applications in food nanotechnology. J Liposome Res 18:309–327

    Google Scholar 

  • Müller RH, Petersen RD, Hommoss A, Pardeike J (2007) Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev 59:522–530

    Google Scholar 

  • Müller RH, Shegokar R, Keck CM (2011) 20 years of lipid nanoparticles (SLN and NLC): present state of development and industrial applications. Curr Drug Discov Technol 8:207–227

    Google Scholar 

  • Nielsen LE (1967) Models for the permeability of filled polymer systems. J Macromol Sci 1(5):929–942

    Google Scholar 

  • Omri A, Agnew BJ, Patel GB (2003) Short-term repeated-dose toxicity profile of archaeosomes administered to mice via intravenous and oral routes. Int J Toxicol 22:9–23

    Google Scholar 

  • Patel GB, Agnew BJ, Deschatelets L, Fleming LP, Sprott GD (2000) In vitro assessment of archaeosome stability for developing oral delivery systems. Int J Pharm 194:39–49

    Google Scholar 

  • Peshev D, Peeva LG, Peev G, Baptista IIR, Boam AT (2011) Application of organic solvent nanofiltration for concentration of antioxidant extracts of rosemary (Rosmarinus officiallis L.). Chem Eng Res Des 89:318–327

    Google Scholar 

  • Petersson L, Oksman K (2006) Biopolymer based nanocomposites: comparing layeredsilicates and microcrystalline cellulose as nanoreinforcement. Compos Sci Technol 66:2187–2196

    Google Scholar 

  • Podsiadlo P, Choi SY, Shim B, Lee J, Cuddihy M, Kotov NA (2005) Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. Biomacromolecules 6:2914–2918

    Google Scholar 

  • Prashantha K, Soulestin J, Lacrampe MF, Krawczak P, Dupin G, Claes M (2009) Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: assessment of rheological and mechanical properties. Compos Sci Technol 69(11–12):1756–1763

    Google Scholar 

  • Pursiainen OLJ, Baumberg JJ, Winkler H, Viel B, Spahn P, Ruhl T (2007) Nanoparticle-tuned structural color from polymer opals. Opt Express 15:9553–9561

    Google Scholar 

  • Qhobosheane M, Santra S, Zhang P, Tan WH (2001) Biochemically functionalized silica nanoparticles. Analyst 126(8):1274–1278

    Google Scholar 

  • Qi LF, Xu ZR, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700

    Google Scholar 

  • Qiao R, Brinson LC (2009) Simulation of interphase percolation and gradients in polymer nanocomposites. Compos Sci Technol 69(3–4):491–499

    Google Scholar 

  • Quintanar D, Allémann E, Fessi H, Doelker E (1998) Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm 24:1113–1128

    Google Scholar 

  • Quintanilla-Carvajal MX, Camacho-Díaz BH, Meraz-Torres LS, Chanona-Pérez JJ, Alamilla-Beltrán L, Jimenéz-Aparicio A, Gutiérrez-López GF (2010) Nanoencapsulation: a new trend in food engineering processing. Food Eng Rev 2(1):39–50

    Google Scholar 

  • Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465

    Google Scholar 

  • Radtchenko IL, Sukhorukov GB, Möhwald H (2002) Anovel method for encapsulationof poorly water-soluble drugs: precipitation in polyelectrolyte multilayer shells. Int J Pharm 242:219–223

    Google Scholar 

  • Rajesh, Takashima W, Kaneto K (2004) Amperometric phenol biosensor based on covalent immobilization of tyrosinase onto an electrochemically prepared novel copolymer poly(N-3-aminopropylpyrrole-copolymer) film. Sens Actuators B 102:271–277

    Google Scholar 

  • Reddy MP, Venugopal A, Subrahmanyam M (2007) Hydroxyapatite-supported Ag TiO2 as Escherichia coli disinfection photocatalyst. Water Res 41:379–386

    Google Scholar 

  • Rhim JW, Ng PKW (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 47(4):411–433

    Google Scholar 

  • Robertson JMC, Robertson PKJ, Lawton LA (2005) A comparison of the effectiveness of TiO2 photocatalysis and UVA photolysis for the destruction of three pathogenic micro-organisms. J Photochem Photobiol A 175(1):51–56

    Google Scholar 

  • Robinson DKR, Morrison MJ (2010) Nanotechnologies for food packaging: reporting the science and technology research trends: report for the ObservatoryNANO. http://www.observatorynano.eu/project/filesystem/files/Food%20Packaging%20Report%202010%20DKR%20Robinson.pdf. Accessed 15 Sep 2013

  • Ruxton CHS, Reed SC, Simpson MJA, Millington KJ (2004) The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. J Hum Nutr Diet 17:449–459

    Google Scholar 

  • Sadtler V, Rondon-Gonzalez M, Acrement A, Choplin L, Marie E (2010) PEO-covered nanoparticles by emulsion inversion point (eip) method. Macromol Rapid Commun 31(11):998–1002

    Google Scholar 

  • Sadurní N, Solans C, Azemar N, García-Celma MJ (2005) Studies on the formation of O/W nano-emulsions, by low-energy emulsification methods, suitable for pharmaceutical applications. Eur J Pharm Sci 26(5):438–445

    Google Scholar 

  • Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydr Polym 71:235–244

    Google Scholar 

  • Sanguansri P, Augustin MA (2006) Nanoscale materials development—a food industry perspective. Trends Food Sci Technol 17(10):547–556

    Google Scholar 

  • Scampicchio M, Ballabio D, Arecchi A, Cosio SM, Mannino S (2008) Amperometric electronic tongue for food analysis. Microchim Acta 163:11–21

    Google Scholar 

  • Sharma AL, Singhal R, Kumar A, Rajesh, Pande KK, Malhotra BD (2004) Immobilization of glucose oxidase onto electrochemically prepared poly(aniline-co-fluoroaniline) films. J Appl Polym Sci 91(6):3999–4006

    Google Scholar 

  • Shin MJ, Lee JH, Jang Y, Lee-Kim YC, Park E, Kim KM et al (2005) Micellar phytosterols effectively reduce cholesterol absorption at low doses. Ann Nutr Metab 49:346–351

    Google Scholar 

  • Silva HD, Cerqueira MÂ, Vicente AA (2012) Nanoemulsions for food applications: development and characterization. Food Bioprocess Technol 5:854–867

    Google Scholar 

  • Singh RP (2000) Scientific principles of shelf-life evaluation. In: Man D, Jones A (eds) Shelf-life evaluation of foods. Aspen, New York, pp 2–22. ISBN 978-0834217829

    Google Scholar 

  • Soares NFF, Hotchkiss JH (1998) Naringinase immobilization in packaging films for reducing naringin concentration in grapefruit juice. J Food Sci 63:61–65

    Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Google Scholar 

  • Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27:82–89

    Google Scholar 

  • Srinivas PR, Martin P, Tania QV, Qingrong H, Josef LK, Etta S, Hongda C, Charles MP, Karl EF, McDade-Ngutter C, Van H, Pamela S-R, Nancy M, Joseph MB, Johanna D, John M, Sharon AR (2010) Nanotechnology research: applications in nutritional sciences. J Nutr 140:119–124

    Google Scholar 

  • Stark WJ, Pratsinis SE (2002) Aerosol flame reactors for manufacture of nanoparticles. Powder Technol 126:103–108

    Google Scholar 

  • Sun J, Yao JY, Huang SX, Long X, Wang JB, García E (2009) Antioxidant activity of polyphenol and anthocyanin extracts from fruits of Kadsura coccinea (Lem.) AC Smith. Food Chem 117:276–281

    Google Scholar 

  • Tadros T, Izquierdo P, Esquena J, Solans C (2004) Formation and stability of nano-emulsions. Adv Colloid Interface Sci 108–109:303–318

    Google Scholar 

  • Tallury P, Malhotra A, Byrne ML, Santra S (2010) Nanobioimaging and sensing of infectious diseases. Adv Drug Deliv Rev 62:424–437

    Google Scholar 

  • Tan W, Zhang Y, Szeto YS, Liao L (2008) A novel method to prepare chitosan/montmorillonite nanocomposites in the presence of hydroxyl-aluminum olygomeric cations. Compos Sci Technol 68(14):2917–2921

    Google Scholar 

  • Tang C, Liu H (2008) Cellulose nanofiber reinforced poly (vinyl alcohol) composite film with high visible light transmittance. Compos A Appl Sci Manuf 39(10):1638–1643

    Google Scholar 

  • Tang DW, Yu SH, Ho YC, Huang BQ, Tsai GJ, Hsieh HY et al (2013) Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide. Food Hydrocoll 30:33–41

    Google Scholar 

  • Tankhiwale R, Bajpai SK (2009) Graft co-polymerization onto cellulose-based filter paper and its further development as silver nanoparticles-loaded antibacterial food packaging material. Colloids Surf, B 69(2):164–168

    Google Scholar 

  • Taylor TM, Davidson PM, Bruce BD, Weiss J (2005) Liposomal nanocapsules in food science and agriculture. Crit Rev Food Sci Nutr 45:587–605

    Google Scholar 

  • Ullmann M, Friedlander SK, Schmidt-Ott A (2002) Nanoparticle formation by laser ablation. J Nanopart Res 4:499–509

    Google Scholar 

  • Uyama H, Kuwabara M, Tsujimoto T, Nakano M, Usuki A, Kobayashi S (2003) Green nanocomposite from renewable resources: plant oil-clay hybrid materials. Chem Mater 15:2492–2494

    Google Scholar 

  • Vegas R, Moure A, Domínguez H, Parajó JC, Alvarez JR, Luque S (2008) Evaluation of ultra- and nanofiltration for refining soluble products from rice husk xylan. Bioresour Technol 99:5341–5351

    Google Scholar 

  • Vladimiriov V, Betchev C, Vassiliou A, Papageorgiou G, Bikiaris D (2006) Dynamic mechanical and morphological studies of isotactic polypropylene/fumed silica nanocomposites with enhanced gas barrier properties. Compos Sci Technol 66:2935–2944

    Google Scholar 

  • Walde P, Ichikawa S (2001) Enzymes inside lipid vesicles: preparation, reactivity and applications. Biomol Eng 18:143–177

    Google Scholar 

  • Wang XY, Gu F, Yin F, Tu YF (2012) Rapid detection of microorganisms in milk using an in-situ prepared nano-functionalized gold electrode. Chin J Anal Chem 40:657–662

    Google Scholar 

  • Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117–125

    Google Scholar 

  • Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71(9):107–116

    Google Scholar 

  • Weiss J, Decker EA, McClements DJ, Kristbergsson K, Helgason T, Awad T (2008) Solid lipid nanoparticles as delivery systems for bioactive food components. Food Biophys 3(2):146–154

    Google Scholar 

  • Wu Y, Luo Y, Wang Q (2012) Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid–liquid dispersion method. LWT Food Sci Technol 48:283–290

    Google Scholar 

  • Xiao-e L, Green ANM, Haque SA, Mills A, Durrant JR (2004) Light-driven oxygen scavenging by titania/polymer nanocomposite films. J Photochem Photobiol A 162:253–259

    Google Scholar 

  • Xiong HG, Tang SW, Tang HL, Zou P (2008) The structure and properties of a starch-based biodegradable film. Carbohydr Polym 71:263–268

    Google Scholar 

  • Yin LJ, Chu BS, Kobayashi I, Nakajima M (2009) Performance of selected emulsifiers and their combinations in the preparation of [beta]-carotene nanodispersions. Food Hydrocoll 23(6):1617–1622

    Google Scholar 

  • Yu H, Xu X, Chen X, Lu T, Zhang P, Jing X (2007) Preparation and antibacterial effects of PVA-PVP hydrogels containing silver nanoparticles. J Appl Polym Sci 103:125–133

    Google Scholar 

  • Zarif L (2003) Nanocochleate cylinders for oral & parenteral delivery of drugs. J Liposome Res 13:109–110

    Google Scholar 

  • Zeng H, Gao C, Wang Y, Watts PCP, Kong H, Cui X, Yan D (2006) In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: mechanical properties and crystallization behavior. Polymer 47:113–122

  • Zhang L, Zheng Y, Chow MSS, Zuo Z (2004) Investigation of intestinal absorption and disposition of green tea catechins by CaCO-2 monolayer model. Int J Pharm 287:1–12

  • Zhou X, Shin E, Wang KW, Bakis CE (2004) Interfacial damping characteristics of carbon nanotube-based composites. Compos Sci Technol 64(15):2425–2437

    Google Scholar 

  • Zimet P, Rosenberg D, Livney YD (2011) Re-assembled casein micelles and casein nanoparticles as nano-vehicles for omega-3 polyunsatturated fatty acids. Food Hydrocoll 25(5):1270–1276

Download references

Acknowledgments

Chancellor and Vice Chancellor, VIT University, Vellore, TN, India is acknowledged for providing financial help for the project under the category of RGEMS-VC Fund, VIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chidambaram Ramalingam.

Additional information

Shivendu Ranjan and Nandita Dasgupta have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, S., Dasgupta, N., Chakraborty, A.R. et al. Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16, 2464 (2014). https://doi.org/10.1007/s11051-014-2464-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2464-5

Keywords

Navigation