Skip to main content
Log in

Engineering the surface of hybrid organic–inorganic films with orthogonal grafting of oxide nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Superparamagnetic iron oxide nanoparticles of magnetite have been grafted on the surface of a hybrid organic–inorganic film prepared using an organically modified alkoxide, 3-glycidoxypropyltrimethoxysilane, as precursor. A solventless synthesis of the hybrid films at high pH has been employed and the surface chemistry of the deposited films has been processed by controlling the aging time of the sol. The films have been characterized by FTIR, Raman and UV spectroscopy and grazing incidence X-ray diffraction. Films prepared with fresh sols have shown a mixed presence of epoxides and hydroxyls on the surface, which enabled the successful grafting of the iron oxide nanoparticles. Films from aged sols, which contain only hydroxyls, have failed to bind the iron particles but have instead shown the capability of grafting ceria nanoparticles. This method has, therefore, allowed a direct grafting of nanoparticles on the hybrid surface without any post-synthetic functionalization step. Moreover, the phase transition induced in iron oxide nanoparticles by means of a laser beam has been exploited to pattern the film surface creating different domains of magnetite and hematite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aboulaich A, Lorret O, Boury B, Mutin PH (2009) Surfactant free organo soluble silica titania and silica nanoparticles. Chem Mater 21:2577–2579

    Article  Google Scholar 

  • Aboulaich A, Boury B, Mutin PH (2010) Reactive and organosoluble anatase nanoparticles by a surfactant-free non hydrolytic synthesis. Chem Mater 22:4519–4521

    Article  Google Scholar 

  • Ahliah IW, Zainal AA, Puteh R (2013) Transparent nanocrystallite silver for antibacterial coating. J Nano Mater 2013:1–6

    Google Scholar 

  • Alonso B, Massiot D, Valentini M, Kidchob T, Innocenzi P (2008) Design of hybrid organic–inorganic materials through their structure control: the case of epoxy bearing alkoxides. J Non-Cryst Solids 354:1615–1626

    Article  Google Scholar 

  • Aronniemi M, Saino J, Lahtinen J (2008) Characterization and gas-sensing behavior of an iron oxide thin film prepared by atomic layer deposition. Thin Solid Films 516:6110–6115

    Article  Google Scholar 

  • Carboni D, Pinna A, Malfatti L, Innocenzi P (2014) Smart tailoring of the surface chemistry in GPTMS hybrid organic–inorganic films. New J Chem 38:1635–1640

    Article  Google Scholar 

  • Chernyshova IV, Hochella MF Jr, Madden AS (2007) Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition. Phys Chem Chem Phys 9:1736–1750

    Article  Google Scholar 

  • Colombo M, Carregal-Romero S, Casula MF, Gutierrez L, Morales MP, Böhm IB, Heverhagen JT, Prosperi D, Parak WJ (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306–4334

    Article  Google Scholar 

  • de Faria DLA, Venancio Silva S, de Oliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–878

    Article  Google Scholar 

  • Guo L, Huang Q, Li X, Yang S (2001) Iron nanoparticles: synthesis and applications in surface enhanced Raman scattering and electrocatalysis. Phys Chem Chem Phys 3:1661–1665

    Article  Google Scholar 

  • Innocenzi P (2003) Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview. J Non-Cryst Solids 316:309–319

    Article  Google Scholar 

  • Innocenzi P, Figus C, Kidchob T, Valentini M, Alonso B, Takahashi M (2009) Sol–gel reactions of 3-glycidoxypropyltrimethoxysilane in a highly basic aqueous solution. Dalton Trans 42:9146–9152

    Article  Google Scholar 

  • Jubb AM, Allen HC (2010) Vibrational spectroscopic characterization of Hematite, Maghemite, and Magnetite thin films produced by vapor deposition. ACS Appl Mater Interfaces 2:2804–2812

    Article  Google Scholar 

  • Kanga YS, Lee DK, Stroeve P (1998) FTIR and UV–vis spectroscopy studies of Langmuir–Blodgett films of stearic acid/γ-Fe2O3 nanoparticles. Thin Solid Films 327–329:541–544

    Article  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  Google Scholar 

  • Lewis IR, Edwards HGM (2011) Handbook of Raman spectroscopy: from the research laboratory to the process line, vol 28., Practical spectroscopic series. CRC Press, New York, pp 149–153 ago 2001

  • Li Y-S, Church JS, Woodhead AL (2012) Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications. J Magn Magn Mater 324:1543–1550

    Article  Google Scholar 

  • Lutterotti L (2010) Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nucl Instr Methods Phys Res B 268:334–340

    Article  Google Scholar 

  • McBride JR, Hass KC, Poindexter BD, Weber WH (1994) Raman and X-ray studies of Ce1-XREXO2-Y where RE = La, Pr, Nd, Eu, Gd and Tb. J Appl Phys 76:2435–2441

    Article  Google Scholar 

  • Noguera CJ, Goniakowski J (2013) Polarity in oxide nano-objects. Chem Rev 113:4073–4105

    Article  Google Scholar 

  • Pichon BP, Buchwalter P, Carcel C, Cattoën X, Wong Chi Man M, Begin-Colin S (2012) Assembling of magnetic iron oxide nanoparticles controlled by self-assembled monolayers of functional coordinating or chelating trialkoxysilanes. Open Surf Sci J 4:35–41

    Article  Google Scholar 

  • Pinna A, Figus C, Lasio B, Piccinini M, Malfatti L, Innocenzi P (2012) Release of ceria nanoparticles grafted on hybrid organic–inorganic films for biomedical application. ACS Appl Mater Interfaces 4:3916–3922

    Article  Google Scholar 

  • Shebanova ON, Lazor P (2003) Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. J Solid State Chem 174:424–430

    Article  Google Scholar 

  • Takahashi M, Figus C, Kidchob T, Enzo S, Casula M, Valentini M, Innocenzi P (2009) Self-organized nanocrystalline organosilicates in organic-inorganic hybrid films. Adv Mater 21:9146–9152

    Article  Google Scholar 

  • Tartaj P, del Puerto MM, Veintemillas-Verdaguer S, González-Carreño T, Serna CJ (2003) The preparation of magnetic nanoparticles for application in biomedicine. J Phys D 36:R182–R197

    Article  Google Scholar 

  • Tran N, Mir A, Mallik D, Sinha A, Nayar S, Webster T (2010) Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int J Nanomed 5:277–283

    Google Scholar 

  • Xu C, Qu X (2014) Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. Asia Mater 6:16–e90

    Google Scholar 

  • Xu QF, Wang JN (2010) Superhydrophobic and trans-parent coatings prepared by selfassembly of dual-sized silica particles. Front Mater Sci China 4:180–188

    Article  Google Scholar 

  • Yu S, Chow GM (2004) Carboxyl group (–COOH) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications. J Mater Chem 14:2781–2786

    Article  Google Scholar 

Download references

Acknowledgments

Mr. P. Cora is gratefully acknowledged for technical support. The Sardinian Regional Government (RAS) is kindly acknowledged for funding D. Carboni through P.O.R. SARDEGNA F.S.E. 2007–2013—Obiettivo competitività regionale e occupazione, Asse IV Capitale umano, Linea di Attività l.3.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Plinio Innocenzi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinna, A., Lasio, B., Carboni, D. et al. Engineering the surface of hybrid organic–inorganic films with orthogonal grafting of oxide nanoparticles. J Nanopart Res 16, 2463 (2014). https://doi.org/10.1007/s11051-014-2463-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2463-6

Keywords

Navigation