Skip to main content
Log in

UV-induced transformation and physicochemical property changes of quantum dots in the presence of air

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Engineered nanomaterials (ENMs) can be released to the environment during their lifecycles. The potential uptake by biological systems, along with uncertain distribution pathways, makes this class of materials important to study from a perspective of potential impacts to the environment and people. In this study, colloidal quantum dots (Q-dots), with diameter around 3 nm and passivated with C18H33 chains (oleic acid), were used, as a model system, to investigate the fate and the transformations of ENMs under UV irradiation in the presence of air. Before and after the UV light irradiation, the changes of the Q-dots on DNA interaction potency, and UV–Vis and fluorescence spectra are compared. When the Q-dots were exposed to UV light, the formation of water-soluble products was confirmed by UV–Vis and fluorescence spectra collected from aqueous dispersions and by the mass loss. Both the UV irradiation time and intensity were found to influence the amount of water-soluble products produced. However, before and after UV irradiation, the Q-dots exhibited little change of their DNA interaction potency. Therefore, it seems that the Q-dot surface chemical reactivity to DNA changed little, in conjunction with photo-oxidization of the surface passivation ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) In-depth review: manufacture and use of nanomaterials—current status in the UK and global trends. Occup Med 56:300–306

    Article  Google Scholar 

  • Banfield JF, Zhang HZ (2001) Nanoparticles in the environment. Rev Min Geochem 44:1–58

    Article  Google Scholar 

  • Barakat MA, Schaeffer H, Hayes G, Ismat-Shah S (2005) Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles. Appl Catal B 57:23–30

    Article  Google Scholar 

  • Biswas P, Wu CY (2005) Critical review, nanoparticles and the environment. J Air Waste Manag Assoc 55:708–746

    Article  Google Scholar 

  • Colvin VL, Schlamp MC, Alivisatos AP (1994) Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370:354–357

    Article  Google Scholar 

  • Cooper JK, Franco AM, Gul S, Corrado C, Zhang JZ (2011) Characterization of primary amine capped CdSe, ZnSe, and ZnS quantum dots by FT-IR: determination of surface bonding interaction and identification of selective desorption. Langmuir 27:8486–8493

    Article  Google Scholar 

  • Feng Y-L, Lian H, Liao X-J, Zhu J (2009) Chromatographic method for quick estimation of DNA interaction potency of environmental pollutants. Environ Toxic Chem 28:2044–2051

    Article  Google Scholar 

  • Feng Y-L, Nandy JP, Hou Y, Breton F, Lau B, Zhang J, Zhu J (2012) UV light induced transformation of 1-methylnaphthalene in the presence of air and its implications for contaminants research. J Environ Prot 3:1519–1531

    Article  Google Scholar 

  • Gavina JMA, Rubab M, Zhu J, Nong A, Feng Y-L (2011) A tool for rapid screening of direct DNA agents using reaction rates and relative interaction potency: towards screening environmental contaminants for hazard. J Environ Monit 13:3145–3155

    Article  Google Scholar 

  • Hagfeldt A, Gratzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68

    Article  Google Scholar 

  • Jamiesona T, Bakhshia R, Petrovaa D, Pococka R, Imanib M, Alexander M, Seifalian AM (2007) Biological applications of quantum dots. Biomaterials 28:4717–4732

    Article  Google Scholar 

  • Kairdolf BA, Smith AM, Stokes TH, Wang MD, Young AN, Nie S (2013) Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu Rev Anal Chem 6:143–162

    Article  Google Scholar 

  • Kamat PV, Meisel D (2003) Nanoscience opportunities in environmental remediation. C R Chim 6:997–1007

    Article  Google Scholar 

  • Li ZF, Ruckensteln E (2004) Water-soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett 4:1463–1467

    Article  Google Scholar 

  • Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL (2013) Toxicity of engineered nanoparticles in the environment. Anal Chem 85:3036–3049

    Article  Google Scholar 

  • Olabarrieta J, Zorita S, Peña I, Rioja N, Monzón O, Benguria P, Scifo L (2012) Aging of photocatalytic coatings under a water flow: long run performance and TiO2 nanoparticles release. Appl Catal B 123–124:182–192

    Google Scholar 

  • O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  • Ouyang J, Schuurmans C, Zhang Y, Nagelkerke R, Wu X, Kingston D, Wang ZY, Wilkinson D, Li C, Leek DM, Tao Y, Yu K (2011) Low-temperature approach to high-yield and reproducible syntheses of high-quality small-sized PbSe colloidal nanocrystals for photovoltaic applications. ACS Appl Mater Interfaces 3:553–565

    Article  Google Scholar 

  • Qi L, Gao X (2008) Emerging application of quantum dots for drug delivery and therapy. Expert Opin Drug Deliv 5:263–267

    Article  Google Scholar 

  • Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7:331–342

    Article  Google Scholar 

  • Savolainen K, Alenius H, Norppa H, Pylkkänen L, Tuomi T, Kasper G (2010) Risk assessment of engineered nanomaterials and nanotechnologies—A review. Toxicology 269:92–104

    Article  Google Scholar 

  • Shen JH, Zhu YH, Yang XL, Li CZ (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686–3699

    Article  Google Scholar 

  • Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang HF, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie SY (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757

    Article  Google Scholar 

  • Wang J, Zheng S, Shao Y, Liu J, Xu Z, Zhu D (2010) Amino-functionalized Fe3O4@SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interface Sci 349:293–299

    Article  Google Scholar 

  • Wang J-Z, Hou Y, Zhang J, Zhu J, Feng Y-L (2013) Transformation of 2,2′,4,4′,-tetrabromodiphenyl ether under UV irradiation: potential sources of the secondary pollutants. J Hazard Mater 263:778–783

    Article  Google Scholar 

  • Yao C, Carlisi C, Ding J, Feng Y-L (2014) A new approach for characterization of the physicochemical reactivity of single-walled carbon nanotubes with DNA probes. Anal Chim Acta. (submitted)

  • Yong K-T, Law W-C, Hu R, Ye L, Liu L, Swiharte MT, Prasad PN (2013) Nanotoxicity assessment of quantum dots: from cellular to primate studies. Chem Soc Rev 42:1236–1250

    Article  Google Scholar 

  • Yu K, Liu X, Zeng Q, Leek DM, Ouyang JY, Whitmore KM, Ripmeester JA, Tao Y, Yang M (2013a) Effect of tertiary and secondary phosphines on low-temperature formation of quantum dots. Angew Chem Int Ed 52:4823–4828

    Article  Google Scholar 

  • Yu K, Liu XY, Zeng Q, Yang ML, Ouyang JY, Wang XQ, Tao Y (2013b) The formation mechanism of binary semiconductor nanomaterials: shared by single-source and dual-source precursor approaches. Angew Chem Int Ed 52:11034–11039

    Article  Google Scholar 

  • Yu K, Ng P, Ouyang J, Zaman BM, Abulrob A, Baral TN, Fatehi D, Jakubek ZJ, Kingston D, Wu X, Liu X, Hebert C, Leek DM, Whitfield DM (2013c) Low-temperature approach to highly-emissive copper indium sulfide colloidal nanocrystals and their Bio-imaging applications. ACS Appl Mater Interfaces 5:2870–2880

    Article  Google Scholar 

  • Zhelev Z, Jose R, Nagase T, Ohba H, Bakalova R, Ishikawa M, Baba Y (2004) Enhancement of the photoluminescence of CdSe quantum dots during long-term UV-irradiation: privilege or fault in life science research? J Photochem Photobiol B 75(1–2):99–105

    Article  Google Scholar 

Download references

Acknowledgements

We thank Mr. Lukas Balk, Mr. Barry B Mikes, Dr. Xiangyang Liu, and Dr. Bhavana Deore for the preparation of the Q-dot sample used in the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Lai Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, X., Yang, C., Wu, X. et al. UV-induced transformation and physicochemical property changes of quantum dots in the presence of air. J Nanopart Res 16, 2435 (2014). https://doi.org/10.1007/s11051-014-2435-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2435-x

Keywords

Navigation