Journal of Nanoparticle Research

, 15:1942

Biomimetic nanoparticles with polynucleotide and PEG mixed-monolayers enhance calcium phosphate mineralization

  • Kayla B. Vasconcellos
  • Sean M. McHugh
  • Katherine J. Dapsis
  • Alexander R. Petty
  • Aren E. Gerdon
Research Paper

DOI: 10.1007/s11051-013-1942-5

Cite this article as:
Vasconcellos, K.B., McHugh, S.M., Dapsis, K.J. et al. J Nanopart Res (2013) 15: 1942. doi:10.1007/s11051-013-1942-5

Abstract

Biomineralization of hydroxyapatite (Ca10(PO4)6(OH)2) is of significant importance in biomedical applications such as bone and dental repair, and biomimetic control of mineral formation may lead to more effective restorative procedures. Gold nanoparticles are functional scaffolds on which to assemble multi-component monolayers capable of mimicking protein activity in the templated synthesis of calcium phosphate. The goal of this research was to explore nanoparticle templates with mixed-monolayers of uncharged polar polyethylene glycol (PEG) molecules and highly charged polynucleotide and amino acid molecules in their ability to influence mineralization rates and mineral particle size and morphology. This research demonstrates through time-resolved optical density and dynamic light scattering measurements that the combination of tiopronin, PEG, and DNA presented on a nanoparticle surface decreases nanoparticle aggregation from 59 to 21 nm solvated radius, increases mineralization kinetics from 1.5 × 10−3 to 3.1 × 10−3 OD/min, and decreases mineral particle size from 685 to 442 nm average radius. FT-IR and TEM data demonstrate that mineralized material, while initially amorphous, transforms to a semi-crystalline material when guided by template interactions. This demonstrates that surface-tailored monolayer protected cluster scaffolds are successful and controllable mineralization templates with further potential for biomedical applications involving calcium phosphate and other biomaterials.

Keywords

Biomimetic Mineralization Bionanotechnology Functional coatings Gold nanoparticles 

Supplementary material

11051_2013_1942_MOESM1_ESM.docx (762 kb)
Supplementary material (DOCX 763 kb)

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Kayla B. Vasconcellos
    • 1
  • Sean M. McHugh
    • 1
  • Katherine J. Dapsis
    • 1
  • Alexander R. Petty
    • 1
  • Aren E. Gerdon
    • 1
  1. 1.Emmanuel CollegeBostonUSA