Skip to main content
Log in

Adduct formation of ionic and nanoparticular silver with amino acids and glutathione

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

To investigate the interaction of ionic and nanoparticular silver with amino acids and small peptides, an electrospray ionization time-of-flight mass spectrometry method was developed. Monomeric and oligomeric silver adducts were formed with amino acids including cysteine (Cys), methionine, histidine, lysine, or the tripeptide glutathione (GSH). The obtained spectra for ionic silver show clusters in different ratios between Ag+ and the reaction partners (X) including [Ag n X m  − (n + 1)H] (n = 1–4, m = 1–3). Regarding Cys, adduct clusters up to n = 5 and m = 4 were observed as well. Considering silver–GSH interactions, even doubly charged oligomers occur generating [Ag(a + 1)GSH a  − (a + 3)H]2− (a = 5–7) and [Ag b GSH b  − (b + 2)H]2− (b = 4–8) ions. 1H NMR data of free GSH compared to that after treatment with Ag+ confirm sulfur–metal interactions due to changing chemical shifts for the protons located adjacent to the thiol group. Density functional theory calculations for silver–GSH clusters may explain the formation of experimentally recorded large clusters due to cooperative effects between silver and carboxylic acid side chains. Both sets of experiments indicate the presence of these adducts in the liquid phase. For silver nanoparticles, the respective data confirm the release of silver ions and the subsequent adduct formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albert A, Brauckmann C, Blaske F, Sperling M, Engelhard C, Karst U (2012) Speciation analysis of the antirheumatic agent Auranofin and its thiol adducts by LC/ESI–MS and LC/ICP–MS. J Anal At Spectrom 27(6):975–981

    Article  Google Scholar 

  • Alexander J, Aaseth J (1981) Hepatobiliary transport and organ distribution of silver in the rat as influenced by selenite. Toxicology 21(3):179–186

    Article  Google Scholar 

  • Bellina B, Compagnon I, Bertorelle F, Broyer M, Antoine R, Dugourd P, Gell L, Kulesza A, Mitric R, Bonacic-Koutecky V (2011) Structural and optical properties of isolated noble metal-glutathione complexes: insight into the chemistry of liganded nanoclusters. J Phys Chem C 115:24549–24554

    Article  Google Scholar 

  • Bragg PD, Rainnie DJ (1974) The effect of silver ions on the respiratory chain of Escherichia coli. Can J Microbiol 20(6):883–889

    Article  Google Scholar 

  • Brauckmann C, Wehe CA, Kieshauer M, Lanvers-Kaminsky C, Sperling M, Karst U (2012) The interaction of platinum-based drugs with native biologically relevant proteins. Anal Bioanal Chem 405(6):1855–1864

    Article  Google Scholar 

  • Corazza A, Harvey I, Sadler PJ (1996) 1H, 13C-NMR and X-ray absorption studies of copper(I) glutathione complexes. Eur J Biochem 236(2):697–705

    Article  Google Scholar 

  • Drake PL, Hazelwood KJ (2005) Exposure-related health effects of silver and silver compounds: a review. Ann Occup Hyg 49(7):575–585

    Article  Google Scholar 

  • Edwards-Jones V (2009) The benefits of silver in hygiene, personal care and healthcare. Lett Appl Microbiol 49(2):147–152

    Article  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668

    Article  Google Scholar 

  • Ghandour W, Hubbard J, Deistung J, Hughes M, Poole R (1988) The uptake of silver ions by Escherichia coli K12: toxic effects and interaction with copper ions. Appl Microbiol Biotechnol 28(6):559–565

    Article  Google Scholar 

  • Gondikas AP, Morris A, Reinsch BC, Marinakos SM, Lowry GV, Hsu-Kim H (2012) Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation. Environ Sci Technol 46(13):7037–7045

    Article  Google Scholar 

  • Janzen R, Schwarzer M, Sperling M, Vogel M, Schwerdtle T, Karst U (2011) Adduct formation of Thimerosal with human and rat hemoglobin: a study using liquid chromatography coupled to electrospray time-of-flight mass spectrometry (LC/ESI-TOF–MS). Metallomics 3(8):847–852

    Article  Google Scholar 

  • Kim Y, Suh HS, Cha HJ, Kim SH, Jeong KS, Kim DH (2009) A case of generalized argyria after ingestion of colloidal silver solution. Am J Ind Med 52(3):246–250

    Article  Google Scholar 

  • Krupp E, Milne B, Mestrot A, Meharg A, Feldmann J (2008) Investigation into mercury bound to biothiols: structural identification using ESI-ion-trap MS and introduction of a method for their HPLC separation with simultaneous detection by ICP–MS and ESI-MS. Anal Bioanal Chem 390(7):1753–1764

    Article  Google Scholar 

  • Kumar S, Bolan MD, Bigioni TP (2010) Glutathione-stabilized magic-number silver cluster compounds. J Am Chem Soc 132(38):13141–13143

    Article  Google Scholar 

  • Kumbhar S, Jana S, Anoop A, Waller MP (2013) Cooperativity in bimetallic glutathione complexes. (in press)

  • Lee VWM, Li H, Lau T-C, Guevremont R, Siu KWM (1998) Relative silver(I) ion binding energies of α-amino acids: a determination by means of the kinetic method. J Am Soc Mass Spectrom 9(8):760–766

    Article  Google Scholar 

  • Li H, Michael Siu KW, Guevremont R, Le Blanc JCY (1997) Complexes of silver(I) with peptides and proteins as produced in electrospray mass spectrometry. J Am Soc Mass Spectrom 8(8):781–792

    Article  Google Scholar 

  • Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25(4):279–283

    Article  Google Scholar 

  • Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44(6):2169–2175

    Article  Google Scholar 

  • Liu R, Sun F, Zhang L, Zong W, Zhao X, Wang L, Wu R, Hao X (2009) Evaluation on the toxicity of nano Ag to bovine serum albumin. Sci Total Environ 407(13):4184–4188

    Article  Google Scholar 

  • Liu J, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4(11):6903–6913

    Article  Google Scholar 

  • Lu M, Li X-F, Le XC, Weinfeld M, Wang H (2010) Identification and characterization of cysteinyl exposure in proteins by selective mercury labeling and nano-electrospray ionization quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 24(11):1523–1532

    Article  Google Scholar 

  • Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263(33):17205–17208

    Google Scholar 

  • Michalke B (2010) Platinum speciation used for elucidating activation or inhibition of Pt-containing anti-cancer drugs. J Trace Elem Med Biol 24(2):69–77

    Article  Google Scholar 

  • Modak SM, Fox CL (1973) Binding of silver sulfadiazine to the cellular components of Pseudomonas aeruginosa. Biochem Pharmacol 22(19):2391–2404

    Article  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346

    Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42(23):8959–8964

    Article  Google Scholar 

  • Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85(22):3533–3539

    Article  Google Scholar 

  • Połeć-Pawlak K, Ruzik R, Lipiec E (2007) Investigation of Cd(II), Pb(II) and Cu(I) complexation by glutathione and its component amino acids by ESI–MS and size exclusion chromatography coupled to ICP–MS and ESI–MS. Talanta 72(4):1564–1572

    Article  Google Scholar 

  • Ravindran A, Singh A, Raichur AM, Chandrasekaran N, Mukherjee A (2010) Studies on interaction of colloidal Ag nanoparticles with Bovine Serum Albumin (BSA). Colloids Surf B 76(1):32–37

    Article  Google Scholar 

  • Shoeib T, Siu KWM, Hopkinson AC (2002) Silver ion binding energies of amino acids: use of theory to assess the validity of experimental silver ion basicities obtained from the kinetic method. J Phys Chem A 106(25):6121–6128

    Article  Google Scholar 

  • Shoeib T, Atkinson DW, Sharp BL (2010) Structural analysis of the anti-arthritic drug Auranofin: its complexes with cysteine, selenocysteine and their fragmentation products. Inorg Chim Acta 363(1):184–192

    Article  Google Scholar 

  • Slawson RM, Lee H, Trevors JT (1990) Bacterial interactions with silver. BioMetals 3:151–154

    Google Scholar 

  • Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134(3):489–492

    Google Scholar 

  • Xiu Z-M, Ma J, Alvarez PJJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45(20):9003–9008

    Article  Google Scholar 

  • Xiu Z-M, Zhang Q-B, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12(8):4271–4275

    Google Scholar 

  • Yang X, Gondikas AP, Marinakos SM, Auffan M, Liu J, Hsu-Kim H, Meyer JN (2012) Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46(2):1119–1127

    Article  Google Scholar 

  • Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M, Rose J, Liu J, Bernhardt ES (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45(6):2360–2367

    Article  Google Scholar 

Download references

Acknowledgments

F. Blaske would like to thank The German Federal Environmental Foundation (Deutsche Bundesstiftung Umwelt, DBU, Osnabrück, Germany) for financial support in form of a Ph.D. scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Karst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blaske, F., Stork, L., Sperling, M. et al. Adduct formation of ionic and nanoparticular silver with amino acids and glutathione. J Nanopart Res 15, 1928 (2013). https://doi.org/10.1007/s11051-013-1928-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1928-3

Keywords

Navigation