Skip to main content
Log in

Direct gas-phase synthesis of single-phase β-FeSi2 nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

For the first time, phase-pure β-FeSi2 nanoparticles were successfully produced by gas-phase synthesis. We present a method to fabricate larger quantities of semiconducting β-FeSi2 nanoparticles, with crystallite sizes between 10 and 30 nm, for solar and thermoelectric applications utilizing a hot-wall reactor. A general outline for the production of those particles by thermal decomposition of silane and iron pentacarbonyl is provided based on kinetic data. The synthesized particles are investigated by X-ray diffraction and transmission electron microscopy, providing evidence that the as-prepared materials are indeed β-FeSi2, while revealing morphological characteristics inherent to the nanoparticles created.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akiyama K, Ohya S, Funakubo H (2004) Preparation of β-FeSi2 thin film by metal organic vapor deposition using iron carbonyl and mono-silane. Thin Solid Films 461:40–43

    Article  Google Scholar 

  • Antonov VN, Jepsen O (1998) Electronic structure and optical properties of β-FeSi2. Phys Rev B 57:8934–8938

    Article  Google Scholar 

  • Bux SK, Blair RG, Gogna PK, Lee H, Chen G, Dresselhaus MS, Kaner RB, Fleurial JP (2009) Nanostructured bulk silicon as an effective thermoelectric material. Adv Funct Mater 19:2445–2452

    Article  Google Scholar 

  • Dahal N, Chikan V (2010) Phase-controlled synthesis of iron silicide (Fe3Si and FeSi2) nanoparticles in solution. Chem Mater 22:2892–2897

    Article  Google Scholar 

  • Dusausoy Y, Protas J, Wandji R, Roques B (1971) Structure cristalline du disilicure de Fer, FeSi2 β. Acta Cryst B27:1209–1218

    Article  Google Scholar 

  • Giesen B, Orthner HR, Kowalik A, Roth P (2004) On the interaction of coagulation and coalescence during gas-phase synthesis of Fe-nanoparticle agglomerates. Chem Eng Sci 59:2201–2211

    Article  Google Scholar 

  • Han L, Xin-Feng T, Wie-Qiang C, Qing-Jie Z (2009) Quick preparation and thermal transport properties of nanostructured β-FeSi2 bulk material. Chinese Phys B 18:287–292

    Article  Google Scholar 

  • Heinrich A, Griessmann H, Behr G, Ivanenko K, Schumann J, Vinzelberg H (2001) Thermoelectric properties of β-FeSi2 single crystals and polycrystalline β-FeSi2+x thin films. Thin Solid Films 381:287–295

    Article  Google Scholar 

  • Hong SJ, Rhee CK, Chun BS (2006) Phase transition and thermoelectric property of ultra-fine structured β-FeSi2 compounds. Sol Stat Phen 118:591–596

    Article  Google Scholar 

  • Imai A, Kunimatsu S, Akiyama K, Terai Y, Maeda Y (2007) Submicron dry-etching behavior of β-FeSi2 thin films towards fabrication of photonic crystals. Thin Solid Films 515:8162–8165

    Article  Google Scholar 

  • Kakemoto H, Makita Y, Sakuragi SH, Tsukamoto T (1999) Synthesis and properties of semiconducting iron disilicide β-FeSi2. Jpn J Appl Phys 38:5192–5199

    Article  Google Scholar 

  • Kameyama T, Sakanaka K, Arakawa H, Motoe A, Tsunoda T, Fukuda K (1993) Preparation of ultrafine Fe-Si-C powders in a radio-frequency thermal plasma and their catalytic properties. J Mat Sci 28:4630–4636

    Article  Google Scholar 

  • Lutterotti L, Bortolotti M, Ischia G, Lonardelli I, Wenk HR (2007) Rietveld texture analysis from diffraction images. Z Kristallogr Suppl 26:125–130

    Article  Google Scholar 

  • Mahan JE, Geib KM, Robinson GY, Long RG, Xinghua Y, Bai G, Nicolet M, Nathan M (1990) Epitaxial films of semiconducting FeSi2 on (001) silicon. Appl Phys Lett 56:2126–2128

    Article  Google Scholar 

  • Massalski T, Bennet L, Murray J, Baker H (1990) Binary alloy phase diagrams. ASM International, Materials Park

    Google Scholar 

  • Medea Y (2007) Semiconducting β-FeSi2 towards optoelectronics and photonics. Thin Solid Films 515:8118–8121

    Article  Google Scholar 

  • Meng QS, Fan WH, Chen RX, Munir ZA (2010) Thermoelectric properties of nanostructured FeSi2 prepared by field-activated and pressure-assisted reactive sintering. J Alloys Compd 492:303–306

    Article  Google Scholar 

  • Moniruzzaman CG, Park HG, Park KY (2007) Analysis of iron particle growth in aerosol reactor by a discrete-sectional model. Korean J Chem Eng 24:299–304

    Article  Google Scholar 

  • Nagai H, Katsuyama S, Nakayama S, Kobayashi H, Majima K, Ito M (1998) Effects of mechanical alloying and chopper addition on thermoelectric properties of n-type and p-type β-FeSi2 Mat. Trans JIM 4:515–521

    Article  Google Scholar 

  • Naito M, Ishimaru M (2009) Formation process of β-FeSi2 from amorphous Fe-Si synthesized by ion implantation: Fe concentration dependence. J Microsc 236:123–127

    Article  Google Scholar 

  • Onischuk AA, Strunin VP, Ushakova MA, Panfilov VN (1998) Studying of silane thermal decomposition mechanism. Chem Kinet 30:99–110

    Article  Google Scholar 

  • Onischuk AA, Levykin AI, Strunin VP, Ushakova MA, Samoilova RI, Sabelfeld KK, Panfilov VN (2000) Aerosol formation under heterogeneous/homogeneous thermal decomposition of silane: experiment and numerical modeling. J Aerosol Sci 31:879–906

    Article  Google Scholar 

  • Ootsuka T, Liu Z, Osamura M, Fukuzawa Y, Otogawa N, Nakayama Y, Tanoue H, Makita Y (2005) β-FeSi2 based metal-insulator-semiconducting devices formed by sputtering for optoelectronic applications. Mat Sci Eng B 124–125:449–452

    Article  Google Scholar 

  • Petersen EL, Crofton MW (2003) Measurements of high-temperature silane pyrolysis using SiH4 IR emission and SiH2 laser absorption. J Phys Chem A 107:10988–10995

    Article  Google Scholar 

  • Powalla M, Herz K (1993) Co-evaporated thin films of semiconducting β-FeSi2. Appl Surf Sci 65(66):482–488

    Article  Google Scholar 

  • Qiu Y, Shen H, Yin Y, Wu K (2007) Fabrication and thermoelectric properties of β-FeSi2 prepared by mechanical alloying. Trans Nonferrous Met Soc China 17:618–621

    Article  Google Scholar 

  • Schaaf P, Milosavljevic M, Dhar S, Bibic N, Lieb KP, Wölz M, Principi G (2002) Mössbauer optimization of the direct synthesis of b-FeSi2 by ion beam mixing of Fe/Si bilayers. Hyperfine Interactions 139(149):615–621

    Article  Google Scholar 

  • Senthilarasu S, Sathyamoorthy R, Lalitha S (2004) Synthesis and characterization of β-FeSi2 grown by thermal annealing of Fe/Si bilayers for photovoltaic applications. Sol Energy Mater Sol Cells 82:299–305

    Article  Google Scholar 

  • Stadelmann PA (1987) EMS—a software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21:131–145

    Article  Google Scholar 

  • Swihart MT, Girshick SL (1999) Thermochemistry and kinetics of silicon cluster formation during thermal decomposition of silane. J Phys Chem B 103:64–76

    Article  Google Scholar 

  • Tatar B, Kutlu K, Ürgen M (2007) Synthesis of β-FeSi2/Si heterojunctions for photovoltaic applications by unbalanced magnetron sputtering. Thin Solid Films 516:13–16

    Article  Google Scholar 

  • Udono H, Kikuma I, Okuno T, Masumoto Y, Tajima H, Komuro S (2004) Optical properties of β-FeSi2 single crystals grown from solutions. Thin Solid Films 461:182–187

    Article  Google Scholar 

  • Wan Q, Wang TH, Lin CL (2003) Synthesis and optical properties of semiconducting beta-FeSi2 nanocrystals. Appl Phys Lett 82:3224–3226

    Article  Google Scholar 

  • Wang JF, Ji SY, Mimura K, Sato Y, Song SH, Yamane H, Shimada M, Isshiki M (2004) Growth of β-FeSi2 single crystals by the chemical vapor transport method. Phys Stat Sol A 201:2905–2909

    Google Scholar 

  • Wang JF, Saitou S, Ji SY, Isshiki M (2006) Growth conditions of β-FeSi2 single crystals by chemical vapor transport. J Crystal Growth 295:129–132

    Article  Google Scholar 

  • Wen JZ, Goldsmith CF, Ashcraft RW, Green WH (2007) Detailed kinetic modeling of iron nanoparticle synthesis from the decomposition of Fe(CO)5. J Phys Chem C 111:5677–5688

    Article  Google Scholar 

  • Wiggers H, Starke R, Roth P (2001) Silicon particle formation by pyrolysis of silane in a hot wall gasphase reactor. Chem Eng Technol 24:261–264

    Article  Google Scholar 

  • Yamaguchi K, Heya A, Shimura K, Katsumata T, Yamamoto H, Hojou K (2004) Effect of target compositions on the crystallinity of β-FeSi2 prepared by ion beam sputter deposition method. Thin Solid Films 461:17–21

    Article  Google Scholar 

  • Yamane H, Yamada T (2009) Effects of stacking fault on the diffraction intensities of β-FeSi2. J Alloys Compd 476:282–287

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the German Federal Ministry of Education and Research (BMBF), grant 03SF0402A (NADNuM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Bywalez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bywalez, R., Orthner, H., Mehmedovic, E. et al. Direct gas-phase synthesis of single-phase β-FeSi2 nanoparticles. J Nanopart Res 15, 1878 (2013). https://doi.org/10.1007/s11051-013-1878-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1878-9

Keywords

Navigation