Skip to main content
Log in

Growth of CuPd nanoalloys encapsulated in carbon-shell

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Preparation of nanostructured copper-palladium (CuPd) alloys is getting more attention because specific catalytic properties can be tuned by controlling their composition, size, and shape. Thus, a better understanding especially in the formation mechanism of the CuPd nanoalloys is of great importance in designing the catalysts. Growth of CuPd nanoalloys encapsulated in carbon-shell (CuPd@C) was, therefore, studied by in situ synchrotron small-angle X-ray scattering during temperature-programed carbonization (TPC) of the Cu2+- and Pd2+-β-cyclodextrin complexes. A rapid reduction of Cu2+ and Pd2+ with nucleation is found at the temperatures of <423 K, followed by coalescence at 453–573 K. The well-dispersed CuPd nanoalloys having the sizes of 7.6–7.9 nm in diameter are encapsulated in carbon-shell of 1.4–1.8 nm in thickness. The refined extended X-ray absorption fine structure spectra indicate that the bond distances of the first-shell Cu–Pd are 2.61–2.64 Å with the coordination numbers of 5.1–5.6. A homogeneous CuPd alloy at the Cu/Pd atomic ratio of 1 is observed. Note that at the high Cu/Pd ratio, Cu is enriched on the CuPd nanoalloy surfaces, attributable to the relatively low surface free energy of Cu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelsayed V, Aljarash A, El-Shall MS, Al Othman ZA, Alghamdi AH (2009) Microwave synthesis of bimetallic nanoalloys and CO oxidation on ceria-supported nanoalloys. Chem Mater 21(13):2825–2834

    Article  CAS  Google Scholar 

  • Aragon SR, Pecora R (1976) Theory of dynamic light-scattering from polydisperse systems. J Chem Phys 64(6):2395–2404

    Article  CAS  Google Scholar 

  • Balluffi RW, Bkakely JM (1975) Special aspects of diffusion in thin films. Thin Solid Films 25(2):363–392

    Article  CAS  Google Scholar 

  • Chakraborty J, Welzel U, Mittemeijer EJ (2010) Mechanisms of interdiffusion in Pd–Cu thin film diffusion couples. Thin Solid Films 518(8):2010–2020

    Article  CAS  Google Scholar 

  • Chiu YM, Huang CH, Chang FC, Kang HY, Wang HP (2011) Recovery of copper from a wastewater for preparation of Cu@C nanoparticles. Sustain Environ Res 21(4):279–282

    CAS  Google Scholar 

  • Davoodi J, Ahmadi M, Rafii-Tabar H (2010) Molecular dynamics simulation study of thermodynamic and mechanical properties of the Cu–Pd random alloy. Mater Sci Eng A 527(16–17):4008–4013

    Google Scholar 

  • de Siervo A, Paniago R, Soares EA, Pfannes HD, Landers R, Kleiman GG (2005) Growth study of Cu/Pd(111) by RHEED and XPS. Surf Sci 575(1–2):217–222

    Article  Google Scholar 

  • Fox EB, Velu S, Engelhard MH, Chin YH, Miller JT, Kropf J, Song CS (2008) Characterization of CeO(2)-supported Cu–Pd bimetallic catalyst for the oxygen-assisted water-gas shift reaction. J Catal 260(2):358–370

    Article  CAS  Google Scholar 

  • Gellman AJ, Miller JB, Kondratyuk P, Shukla S, Broitman E (2010) High throughput study of the catalytic activity of CuPd alloys for hydrogen purification membranes. In: Abstract of Papers American Chemical Society 240: 89-CATL

  • Guinier A, Fournet G (1955) Small-angle scattering of X-rays. Wiley, New York

    Google Scholar 

  • Harada M, Katagiri E (2010) Mechanism of silver particle formation during photoreduction using in situ time-resolved SAXS. Langmuir 26(23):17896–17905

    Article  CAS  Google Scholar 

  • Huang CH, Wang HP, Chang JE, Eyring EM (2009) Synthesis of nanosize-controllable copper and its alloys in carbon shells. Chem Commun 31:4663–4665

    Article  Google Scholar 

  • Kang HY, Wang HP, Lin WK, Sun IW, Jou CJG, Jeng US, Chang SG (2012) Growth of nano Co encapsulated in carbon-shell. J Electron Spectrosc Relat Phenom 185(12):567–572

    Article  CAS  Google Scholar 

  • Khanuja M, Mehta BR, Shivaprasad SM (2008) Two approaches for enhancing the hydrogenation properties of palladium: metal nanoparticle and thin film over layers. J Chem Sci 120(6):573–578

    Article  CAS  Google Scholar 

  • Lee CY, Lee SJ, Shen CC, Yeh CT, Chang CC, Chang YM (2011) In-situ measurement of the local temperature distributions for the steam reforming of a methanol micro reformer by using flexible micro temperature sensors. Int J Hydrogen Energy 36(4):2869–2876

    Article  CAS  Google Scholar 

  • Liu DG, Chang CH, Liu CY, Chang SH, Juang JM, Song YF, Yu KL, Liao KF, Hwang CS, Fung HS, Tseng PC, Huang CY, Huang LJ, Chung SC, Tang MT, Tsang KL, Huang YS, Kuan CK, Liu YC, Liang KS, Jeng US (2009) A dedicated small-angle X-ray scattering beamline with a superconducting wiggler source at the NSRRC. J Synchrot Radiat 16:97–104

    Article  Google Scholar 

  • Mohl M, Dobo D, Kukovecz A, Konya Z, Kordas K, Wei JQ, Vajtai R, Ajayan PM (2011) Formation of CuPd and CuPt bimetallic nanotubes by galvanic replacement reaction. J Phys Chem C 115(19):9403–9409

    Article  CAS  Google Scholar 

  • Nie YG, Wang Y, Sun Y, Pan JS, Mehta BR, Khanuja M, Shivaprasad SM, Sun CQ (2010) CuPd interface charge and energy quantum entrapment: a tight-binding and XPS investigation. Appl Surf Sci 257(3):727–730

    Article  CAS  Google Scholar 

  • Okada M, Kamegawa A, Nakahigashi J, Yamaguchi A, Fujita A, Yamauchi M (2010) New function of hydrogen in materials. Mater Sci Eng B 173(1–3):253–259

    Article  CAS  Google Scholar 

  • Palasantzas G, Vystavel T, Koch SA, De Hosson JTM (2006) Coalescence aspects of cobalt nanoparticles during in situ high-temperature annealing. J Appl Phys 99(2):024307

    Google Scholar 

  • Porod G (1980) Small angle X-ray scattering. Academic Press, New York

    Google Scholar 

  • Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrot Radiat 12(4):537–541

    Article  CAS  Google Scholar 

  • Robertson J (2002) Diamond-like amorphous carbon. Mater Sci Eng Rep 37(4–6):129–281

    Article  Google Scholar 

  • Smith MC, Gilbert JA, Mawdsley JR, Seifert Sn, Myers DJ (2008) In situ small-angle X-ray scattering observation of Pt catalyst particle growth during potential cycling. J Am Chem Soc 130(26):8112–8113

    Article  CAS  Google Scholar 

  • Sun CQ, Wang Y, Nie YG, Mehta BR, Khanuja M, Shivaprasad SM, Sun Y, Pan JS, Pan LK, Sun Z (2010) Interface quantum trap depression and charge polarization in the CuPd and AgPd bimetallic alloy catalysts. Phys Chem Chem Phys 12(13):3131–3135

    Article  CAS  Google Scholar 

  • Sztucki M, Cola ED, Narayanan T (2011) New opportunities for anomalous small-angle X-ray scattering to characterize charged soft matter systems. J Phys 272(1):012004

    Google Scholar 

  • Tsai CK, Kang HY, Hong CI, Huang CH, Chang FC, Wang HP (2012) Preparation of hollow spherical carbon nanocages. J Nanoparticle Res 14(12):1–8

    Article  Google Scholar 

  • Waseda Y, Matsubara E, Shinoda K (2011) X-ray diffraction crystallography introduction, examples and solved problems. Springer, Berlin. doi:10.1007/978-3-642-16635-8

    Book  Google Scholar 

  • Yamauchi M, Tsukuda T (2011) Production of an ordered (B2) CuPd nanoalloy by low-temperature annealing under hydrogen atmosphere. Dalton Trans 40(18):4842–4845

    Article  CAS  Google Scholar 

  • Yamauchi M, Abe R, Tsukuda T, Kato K, Takata M (2011) Highly selective ammonia synthesis from nitrate with photocatalytically generated hydrogen on CuPd/TiO(2). J Am Chem Soc 133(5):1150–1152

    Article  CAS  Google Scholar 

  • York JT, Llobet A, Cramer CJ, Tolman WB (2007) Heterobimetallic dioxygen activation: synthesis and reactivity of mixed Cu–Pd and Cu–Pt bis(μ-oxo) complexes. J Am Chem Soc 129(25):7990–7999

    Article  CAS  Google Scholar 

  • Zhou GJ, Lu MK, Yang ZS (2006) Aqueous synthesis of copper nanocubes and bimetallic copper/palladium core-shell nanostructures. Langmuir 22(13):5900–5903

    Article  CAS  Google Scholar 

  • Ziya AB, Takahashi M, Ohshima K (2009) The structure and physical properties of CuMPd(6) (M = Ti, V, Mn and Fe) ternary alloys. J Alloy Compd 479(1–2):60–64

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial supports of the Taiwan National Science Council, Bureau of Energy, and the National Synchrotron Radiation Research Center are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, H.Y., Wang, H.P. Growth of CuPd nanoalloys encapsulated in carbon-shell. J Nanopart Res 15, 1672 (2013). https://doi.org/10.1007/s11051-013-1672-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1672-8

Keywords

Navigation