Skip to main content
Log in

Nanodumbbells as multi-functional diagnosis probes

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, we present a method to generate multi-functional nanometre dumbbell structure, which comprises a cobalt magnetic and a gold nanoparticle bridged by target biomarker. Both cobalt magnetic and gold nanoparticles were successfully modified with two different monoclonal antibodies, which will specifically bind to target antigen. ELISA results confirmed that the activities of those antibodies were not lost due to the conjugation to nanoparticles. The formation of dumbbell structure with the presence of target biomarker molecule was demonstrated via scanning electron microscope. The success of this study allows us to apply this featured dumbbell structure into a nanoelectrode device for digital detection of diagnostic biomarker in the next step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Arrigan DWM (2004) Nanoelectrodes, nanoelectrode arrays and their applications. Analyst 129(12):1157–1165

    Article  CAS  Google Scholar 

  • Babić B, Ghai R, Dimitrov K (2007) Induced movement of the magnetic beads and DNA-based dumbbell in a micro fluidic channel. In: Nicolau DV, Abbott D, Kalantar-Zadeh K, Matteo TD, Bezrukov SM (eds) Bioimprint replication of single cells on a biochip, SPIE, Canberra, 2007

  • Babić B, Ghai R, Dimitrov K (2008) Magnetophoresis of flexible DNA-based dumbbell structures. Appl Phys Lett 92(5):053901

    Article  Google Scholar 

  • Barat B, Wu AM (2007) Metabolic biotinylation of recombinant antibody by biotin ligase retained in the endoplasmic reticulum. Biomol Eng 24:283–291

    Article  CAS  Google Scholar 

  • Beadle C, Long GW, Weiss WR, McElroy PD, Maret SM, Oloo AJ, Hoffman SL (1994) Diagnosis of malaria by detection of Plasmodium falciparum HRP-2 antigen with a rapid dipstick antigen-capture assay. Lancet 343:564–568

    Article  CAS  Google Scholar 

  • Berry CC, Dalby MJ, McCloy D, Affrossman S (2005) The fibroblast response to tubes exhibiting internal nanotopography. Biomaterials 26(24):4985–4992

    Article  CAS  Google Scholar 

  • Chavanpatil MD, Khdair A, Panyam J (2006) Nanoparticles for cellular drug delivery: mechanisms and factors influencing delivery. J Nanosci Nanotechnol 6(9–10):2651–2663

    Article  CAS  Google Scholar 

  • Choi JS, Jun YW, Yeon SI, Kim HC, Shin JS, Cheon J (2006) Biocompatible heterostructured nanoparticles for multimodal biological detection. J Am Chem Soc 128(50):15982–15983

    Article  CAS  Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Article  CAS  Google Scholar 

  • Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 2(4):209–215

    Article  CAS  Google Scholar 

  • Faulk WP, Taylor GM (1971) Immunocolloid method for electron microscope. Immunochemistry 8(11):1081–1083

    Article  CAS  Google Scholar 

  • Focà E, Odolini S, Brianese N, Carosi G (2012) Malaria and hiv in adults: when the parasite runs into the virus. Mediterr J Hematol Infect Dis 4(1):32–41

    Article  Google Scholar 

  • Frimpong RA, Hilt JZ (2010) Magnetic nanoparticles in biomedicine: synthesis, functionalization and applications. Nanomed 5(9):1401–1414

    Article  CAS  Google Scholar 

  • Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL, Fell HP, Ferree S, George RD, Grogan T, James JJ, Maysuria M, Mitton JD, Oliveri P, Osborn JL, Peng T, Ratcliffe AL, Webster PJ, Davidson EH, Hood L, Dimitrov K (2008) Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 26(6):709

    Article  CAS  Google Scholar 

  • Geoghegan WD (1988) The effect of 3 variables on adsorption of rabbit Igg to colloidal gold. J Histochem Cytochem 36(4):401–407

    Article  CAS  Google Scholar 

  • Geoghegan WD, Ackerman GA (1977) Adsorption of horseradish-peroxidase, ovomucoid and antiimmunoglobulin to colloidal gold for indirect detection of concanavalin-a, wheat-germ agglutinin and goat antihuman immunoglobulin-G on cell-surfaces at electron-microscopic level—new method. Theory and application. J Histochem Cytochem 25(11):1187–1200

    Article  CAS  Google Scholar 

  • Haes AJ, Stuart DA, Nie SM, Van Duyne RP (2004) Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms. J Fluoresc 14(4):355–367

    Article  CAS  Google Scholar 

  • Hayat MA (1989) Colloidal gold: principles, methods, and applications. Academic Press, San Diego

    Google Scholar 

  • Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Hwang KS, Lee SM, Kim SK, Lee JH, Kim TS (2009) Micro- and nanocantilever devices and systems for biomolecule detection. Annu Rev Anal Chem 2:77–98

    Article  CAS  Google Scholar 

  • Imwong M, Nakeesathit S, Day NP, White NJ (2011) A review of mixed malaria species infections in anopheline mosquitoes. Malar J 10:253–265

    Article  Google Scholar 

  • Iqbal SM, Akin D, Bashir R (2007) Solid-state nanopore channels with DNA selectivity. Nat Nanotechnol 2(4):243–248

    Article  CAS  Google Scholar 

  • Jain PK, El-Sayed IH, El-Sayed MA (2007) Au nanoparticles target cancer. Nano Today 2(1):18–29

    Article  Google Scholar 

  • Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677

    Article  CAS  Google Scholar 

  • Lim DK, Jeon KS, Kim HM, Nam JM, Suh YD (2010) Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater 9(1):60–67

    Article  CAS  Google Scholar 

  • Nakane JJ, Akeson M, Marziali A (2003) Nanopore sensors for nucleic acid analysis. J Phys 15(32):R1365–R1393

    CAS  Google Scholar 

  • Noedl H, Wernsdorfer WH, Miller RS, Wongsrichanalai C (2002) Histidine-rich protein II: a novel approach to antimalarial drug susceptibility testing. Antimicrob Agents Chemother 46:1658–1664

    Article  CAS  Google Scholar 

  • Noedl H, Bronnert J, Yingyuen K, Herwig BA, Attlmayr B, Kollaritsch H, Fukuda M (2005) Simple histidine-rich protein 2 double-site sandwich enzyme-linked immunosorbent assay for use in malaria drug sensitivity testing. Antimicrob Agents Chemother 49(8):3575–3577

    Article  CAS  Google Scholar 

  • Perkins SJ, Nealis AS, Sutton BJ, Feinstein A (1991) Solution structure of human and mouse immunoglobulin-M by synchrotron X-ray-scattering and molecular graphics modeling—a possible mechanism for complement activation. J Mol Biol 221(4):1345–1366

    Article  CAS  Google Scholar 

  • Perrin A, Martin T, Theretz A (2001) A dumbbell-like complex formation for DNA target assay. Bioconjug Chem 12(5):678–683

    Article  CAS  Google Scholar 

  • Raschke G, Kowarik S, Franzl T, Sonnichsen C, Klar TA, Feldmann J, Nichtl A, Kurzinger K (2003) Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett 3(7):935–938

    Article  CAS  Google Scholar 

  • Rawat M, Singh D, Saraf S, Saraf S (2006) Nanocarriers: promising vehicle for bioactive drugs. Biol Pharm Bull 29(9):1790–1798

    Article  CAS  Google Scholar 

  • Rhee M, Burns MA (2006) Nanopore sequencing technology: research trends and applications. Trends Biotechnol 24(12):580–586

    Article  CAS  Google Scholar 

  • Santra S, Dutta D, Walter GA, Moudgil BM (2005) Fluorescent nanoparticle probes for cancer imaging. Technol Cancer Res Treat 4(6):593–602

    CAS  Google Scholar 

  • Tok JBH (2008) Nano and microsensors for chemical and biological terrorism surveillance. RSC, Cambridge

    Book  Google Scholar 

  • Wei Q, Xiang Z, He J, Wang GL, Li H, Qian ZY, Yang MH (2010) Dumbbell-like Au–Fe3O4 nanoparticles as label for the preparation of electrochemical immunosensors. Biosens Bioelectron 26(2):627–631

    Article  CAS  Google Scholar 

  • Wong R, Tse H (2009) Lateral flow immunoassay. Humana, New Jersey

    Book  Google Scholar 

  • Wu XY, Liu HJ, Liu JQ, Haley KN, Treadway JA, Larson JP, Ge NF, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21(4):452

    CAS  Google Scholar 

  • Xu C, Xie J, Ho D, Wang C, Kohler N, Walsh EG, Morgan JR, Chin YE, Sun S (2008) Au–Fe3O4 dumbbell nanoparticles as dual-functional probes. Angew Chem Int Edit 47(1):173–176

    Article  CAS  Google Scholar 

  • Yanov I, Palacios JJ, Hill G (2008) Simple STM tip functionalization for rapid DNA sequencing: an ab initio Green’s function study. J Phys Chem A 112(10):2069–2073

    Article  CAS  Google Scholar 

  • Yu H, Chen M, Rice PM, Wang SX, White RL, Sun SH (2005) Dumbbell-like bifunctional Au–Fe3O4 nanoparticles. Nano Lett 5(2):379–382

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Innovation Projects Fund National and International Research Alliances Program of Queensland Government, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Rauf, S., Padmanabhan, H. et al. Nanodumbbells as multi-functional diagnosis probes. J Nanopart Res 15, 1633 (2013). https://doi.org/10.1007/s11051-013-1633-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1633-2

Keywords

Navigation