Skip to main content
Log in

Preparation of carbon-coated copper nanoparticles by detonation decomposition of copper ion doped sol–gel explosive precursors

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Carbon-coated copper (Cu@C) nanoparticles with a core–shell structure were prepared by detonation decomposition of energetic Cu ion doped sol–gel explosive precursors. The composite nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), high resolution TEM, energy dispersive X-ray spectroscopy, and Raman spectroscopy, respectively. The results indicate that the as-obtained core–shell structure Cu@C nanoparticles are with diameter about 10–40 nm. The composite nanoparticles are composed of face-centered cubic-Cu and the amorphous/graphitic carbon coating shells. The thermal stability of the obtained samples was studied by a difference scanning calorimetry–thermogravimetric analyzer. By varying the composition of initial mixtures that contain Cu ion explosive precursors, the different size and chemical composition of composite nanoparticles are shown in this study. The growth mechanism of Cu@C was also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Bystrzejewski M, Cudziło S, Huczko A, Lange H (2006) Thermal stability of carbon-encapsulated Fe–Nd–B nanoparticles. J Alloys Compd 423:74–76

    Article  CAS  Google Scholar 

  • Bystrzejewski M, Huczko A, Lange H, Baranowski P, Cota-Sanchez G, Soucy G, Szczytko J, Twardowski A (2007) Large scale continuous synthesis of carbon-encapsulated magnetic nanoparticles. Nanotechnology 18:145608–145613

    Article  Google Scholar 

  • Cao H, Li R, Xue J, Li H, Wang X, Bin X, Chen S, Xiang H (2009) A simple technique for preparing carbon encapsulated La and Eu nanoparticles. Carbon 47:1543–1548

    Article  CAS  Google Scholar 

  • Dai JY, Lauerhaas JM, Setlur AA, Chang RPH (1996) Synthesis of carbon-encapsulated nanowires using polycyclic aromatic hydrocarbon precursors. Chem Phys Lett 258:547–553

    Article  CAS  Google Scholar 

  • Funasaka H, Sugiyama K, Yamamoto K, Takahashi T (1995) Synthesis of lanthanum compound encapsulated within carbon nanoparticles. Chem Phys Lett 236:277–284

    Article  CAS  Google Scholar 

  • Hao CC, Xiao F, Cui ZL (2008) Preparation and structure of carbon encapsulated copper nanoparticles. J Nanopart Res 10:47–51

    Article  CAS  Google Scholar 

  • Harris PJF, Tsang SC (1998) Encapsulating uranium in carbon nanoparticles using a new technique. Carbon 36:1859–1861

    Article  CAS  Google Scholar 

  • Jiao J, Seraphin S (1998) Carbon encapsulated nanoparticles of Ni, Co, Cu, and Ti. J Appl Phys 83:2442–2448

    Article  CAS  Google Scholar 

  • Lee SJ, Cho JH, Lee C, Cho J, Kim YR, Park JK (2011) Synthesis of highly magnetic graphite-encapsulated FeCo nanoparticles using a hydrothermal process. Nanotechnology 22:375603–375611

    Article  Google Scholar 

  • Leonowicz M, Woźniak M, Shulga YM, Muradyan VE, Liu Z, Davies HA, Kaszuwara W, Grabski J (2005) Structure and magnetic properties of nanoparticles encapsulated in carbon shells. J Magn Magn Mater 294:e57–e62

    Article  CAS  Google Scholar 

  • Li H, Kang W, Xi B, Yan Y, Bi H (2010) Thermal synthesis of Cu@carbon spherical core–shell structures from carbonaceous matrices containing embedded copper particles. Carbon 48:464–469

    Article  CAS  Google Scholar 

  • Luo N, Li XJ, Wang XH, Yan HH (2009) Preparation and magnetic behavior of carbon-encapsulated iron nanoparticles by detonation method. Compos Sci Technol 69:2554–2558

    Article  CAS  Google Scholar 

  • Luo N, Li XJ, Sun YL, Wang XH (2010a) Synthesis and characteristic of carbon-encapsulated ferronickel nanoparticles by detonation decomposition of doping with nitrate explosive precursors. J Alloys Compd 505:352–356

    Article  CAS  Google Scholar 

  • Luo N, Li XJ, Wang XH, Mo F, Wang HT (2010b) Synthesis of carbon-encapsulated metal nanoparticles by a detonation method. Combust. Explo. Shock+. 46:609–613

    Google Scholar 

  • Luo N, Li XJ, Wang XH, Yan HH, Zhang CF, Wang HT (2010c) Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method. Carbon 48:3858–3863

    Article  CAS  Google Scholar 

  • Luo N, Liu KX, Li XJ, Wu ZW, Wu SY, Ye LM, Shen Y (2012a) Synthesis of graphite-coated copper nanoparticles by the detonation of a copper-doped emulsion explosive. Mendeleev Commun 22:1–3

    Article  Google Scholar 

  • Luo N, Liu KX, Liu ZY, Li XJ, Chen SY, Shen Y, Chen TW (2012b) Controllable synthesis of carbon coated iron-based composite. Nanotechnology 23:475603–475610

    Article  Google Scholar 

  • Luo N, Liu KX, Li XJ, Shen H, Wu SY, Fu Z (2012c) Systematic study of detonation synthesis of Ni-based nanoparticles. Chem Eng J 210:114–119

    Article  CAS  Google Scholar 

  • Nishijo J, Okabe C, Bushiri J, Kosugi K, Nishi N, Sawa H (2005) Formation of carbon-encapsulated metallic nano-particles from metal acetylides by electron beam irradiation. Eur Phys J D 34:219–222

    Article  CAS  Google Scholar 

  • Paraskevas I, Caps V, Tsang SC (2006) Syntheses of carbon encapsulated magnetic FeNi nanoparticle via decompositions of methane and benzene. Carbon 44:820–823

    Article  CAS  Google Scholar 

  • Pasqualini E, Adelfang P, Nuñez RM (1996) Carbon nanoencapsulation of uranium dicarbide. J Nucl Mater 231:173–177

    Article  CAS  Google Scholar 

  • Pekka H, Eero R (1999) Strength of nanoscale copper under shear. Nanostruct Mater 11:587–592

    Article  Google Scholar 

  • Ruoff RS, Lorents DC, Chan B, Malhotra R, Subramoney S (1993) Single crystal metals encapsulated in carbon nanoparticles. Science 259:346–348

    Article  CAS  Google Scholar 

  • Saraswati TE, Ogino A, Nagatsu M (2012) Plasma-activated immobilization of biomolecules onto graphite-encapsulated magnetic nanoparticles. Carbon 50:1253–1261

    Article  CAS  Google Scholar 

  • Schaper AK, Hou H, Greiner A, Schneider R, Phillipp F (2004) Copper nanoparticles encapsulated in multi-shell carbon cages. Appl Phys A 78:73–77

    Article  CAS  Google Scholar 

  • Teunissen W, De Groot FMF, Geus J, Stephan O, Tence M, Colliex C (2001) The structure of carbon encapsulated NiFe nanoparticles. J Catal 204:169–174

    Article  CAS  Google Scholar 

  • Uo M, Kachi H, Akasaka T, Watari F, Sato Y, Motomiya K, Tohji K (2007) The purity and thermal stability in air of metal-encapsulating carbon nanocapsules (MECNCs). Fuller Nanotub Carbon Nanostruct 15:303–309

    Article  CAS  Google Scholar 

  • Urakaev FK, Shevchenko VS, Pokhilenko NP (2010) Preparation of nanoscale particles and coatings on the basis of copper, carbon and silicon by the abrasive-reactive wear method. Mendeleev Commun 20:95–97

    Article  CAS  Google Scholar 

  • Wang S, Huang X, He Y, Huang H, Wu Y, Hou L, Liu X (2012) Synthesis, growth mechanism and thermal stability of copper nanoparticles encapsulated by multi-layer graphene. Carbon 50:2119–2125

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Natural Science Foundation of China (Nos. 10972051, 11272081 and 11028206), China Postdoctoral Science Foundation (No. 2012M510270) and the State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology (Grant No. KFJJ13-05M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, N., Li, XJ., Liu, KX. et al. Preparation of carbon-coated copper nanoparticles by detonation decomposition of copper ion doped sol–gel explosive precursors. J Nanopart Res 15, 1614 (2013). https://doi.org/10.1007/s11051-013-1614-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1614-5

Keywords

Navigation