Skip to main content
Log in

Quantitative analysis of the a.c. susceptibility of core–shell nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Magnetite (Fe3O4) and silica-coated magnetite (Fe3O4@SiO2) nanoparticles (NPs) were synthesized and characterized by scanning and transmission electron microscopy and by a.c. susceptibility measurements as a function of the frequency both at room temperature and 80 K. A new mathematical approach based on the explicit coexistence (at room temperature) of Brownian and Néel contributions is proposed: the magnetic data were quantitatively analyzed following this approach and the results well agree with microscopic data. This mathematical procedure allows the achievement of the complete size distribution of coated magnetic NPs in solution as well as the real dimension of the magnetic nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Thiele G, Poston M, Brown R. A case of study in sizing particles. Micromeritics analytical services. www.particletesting.com

References

  • Colombo C, Palumbo G, Ceglie A, Angelico R (2012) Characterization of synthetic hematite (α-Fe2O3) Nanoparticles using a multi-technique approach. J Colloid Interface Sci 374:118

    Article  CAS  Google Scholar 

  • Connolly J, St Pierre TG (2001) Proposed biosensors based on time-dependent properties of magnetic fluids. J Magn Magn Mater 225:156

    Article  CAS  Google Scholar 

  • Debye P (1929) Polar molecules. Chemical Catalog Company, New York

    Google Scholar 

  • Fannin PC, Coffey WT (1995) Contribution of particles inertial effect to resonance in ferrofluid. Phys Rev E 52:6129

    Article  CAS  Google Scholar 

  • Goya GF, Berquó TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94:3520

    Article  CAS  Google Scholar 

  • Griffete N, Clift MJD, Lamouri A, Digigow RG, Mihut AM, Fink A, Rothen-Rutishauser B, Dietsch H (2012) Amino covalent binding approach on iron oxide nanoparticle surface: toward biological applications. Colloids surf A 415:98–104

    Article  CAS  Google Scholar 

  • Im SH, Herricks T, Lee YT, Xia Y (2005) Synthesis and characterization of monodisperse silica colloids loaded with superparamagnetic iron oxide nanoparticles. Chem Phys Lett 401:19

    Article  CAS  Google Scholar 

  • Kerker M (1969) The scattering of light. Academic Press, New York, p 414

    Google Scholar 

  • Kim J, Piao Y, Lee N, Park YI, Lee I, Lee J, Paik SR, Hyeon T (2010) Magnetic nanocomposite spheres decorated with NiO nanoparticles for a magnetically recyclable protein separation system. Adv Mater 22:57

    Article  CAS  Google Scholar 

  • Koo H, Kano S, Tanaka D, Sakamoto M, Teranishi T, Cho G, Majima Y (2012) Charcaterization of thiolfunctionalized oligo(phenylene-ethynylene)-protected Au nanoparticles by scanning tunneling microscopy and spectroscopy. Appl Phys Lett 101(083115):1–5

    Google Scholar 

  • Kotitz R, Fannin PC, Trahms L (1995) Time domain study of Brownian and Néel relaxation in ferrofluids. J Magn Magn Mater 149:42

    Article  Google Scholar 

  • Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166:8

    CAS  Google Scholar 

  • Lu Z, Dai J, Song X, Wang G, Yang W (2008) Facile synthesis of Fe3O4/SiO2 composite nanoparticles from primary silica particles. Colloids Surf A 317:450–456

    Article  CAS  Google Scholar 

  • Lucchini MA, Canepa F (2012) Brownian relaxation of magnetic nanoparticles in fluid: the effect of the solvent. J Nanopart Res 14:809

    Article  Google Scholar 

  • Ludwig F, Heim E, Schilling M (2009) Characterization of magnetic core–shell nanoparticles by fluxgate magnetorelaxometry, ac susceptibility, transmission electron microscopy and photon correlation spectroscopy-a comparative study. J Magn Magn Mater 321:1644

    Article  CAS  Google Scholar 

  • Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2010) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63:24

    Article  Google Scholar 

  • Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21:2133

    Article  CAS  Google Scholar 

  • Nutting J, Antony J, Meyer D, Sharma A, Qiang Y (2006) The effect of particle size distribution on the usage of the ac susceptibility in biosensors. J Appl Phys 99:08B319

    Article  Google Scholar 

  • O’Handley RC (2000) Modern magnetic materials: principles and applications. Wiley-Interscience, New York

    Google Scholar 

  • Riani P, Napoletano M, Canepa F (2011) Synthesis, characterization and a.c. magnetic analysis of magnetite nanoparticles. J Nanopart Res 13:7013–7015

    Article  CAS  Google Scholar 

  • Schubert U, Hüsing N (2005) Synthesis of inorganic materials. John Wiley & Son, New York

    Google Scholar 

  • Shliomis MI, Raikher YL (1980) Experimental investigations of magnetic fluids. IEEE Trans Magn 16:237

    Article  Google Scholar 

  • Sipos P, Berkesi O, Tombácz E, Pierre TG, Webb J (2003) Formation of spherical iron(III) oxyhydroxide nanoparticles sterically stabilized by chitosan in aqueous solutions. J Inorg Biochem 95:55

    Article  CAS  Google Scholar 

  • Stober W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62

    Article  Google Scholar 

  • Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support of Miss. Agnese Carino is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Canepa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucchini, M.A., Riani, P. & Canepa, F. Quantitative analysis of the a.c. susceptibility of core–shell nanoparticles. J Nanopart Res 15, 1601 (2013). https://doi.org/10.1007/s11051-013-1601-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1601-x

Keywords

Navigation