Skip to main content
Log in

Chemical modifications and stability of diamond nanoparticles resolved by infrared spectroscopy and Kelvin force microscopy

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Chemically modified 5-nm detonation diamond nanoparticles (DNPs) are characterized by grazing angle reflectance (GAR) Fourier transform infrared spectroscopy (FTIR), Kelvin force microscopy (KFM), and X-ray photoelectron spectroscopy (XPS). Using GAR-FTIR we discuss the surface chemistry and stability of the as-received DNPs, and compare them with DNPs modified by annealing in air or by oxygen plasma treatment. Infrared spectra of the as-received DNPs are dominated by C–H bonds and carboxylic groups (COOH), probably related to the wet chemical treatment in acids. Annealing in air and oxygen plasma lead to a significant enhancement of C=O groups and vanishing C–H groups. After short-term (10 min) oxygen plasma treatment, infrared peaks change in intensity and position indicating a spontaneous reactivity of DNPs, probably due to the partial erosion of the graphitic shell. Prolonged oxygen plasma treatment (40 min) or annealing in air at 450 °C for 30 min provides a stable DNPs surface. Surface potentials of DNPs obtained by KFM are well correlated with the GAR-FTIR measurements. XPS characterization corroborates DNPs compositional changes after the modification procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alhaddad A, Adam MP, Botsoa J, Dantelle G, Perruchas S, Gacoin T, Mansuy C, Lavielle S, Malvy C, Treussart F, Bertrand JR (2011) Nanodiamond as a vector for siRNA delivery to Ewing sarcoma cells. Small 7(21):3087–3095

    Article  CAS  Google Scholar 

  • Ando T, Inoue S, Ishii M, Kamo M, Sato Y, Yamada O, Nakano T (1993) Vapour-phase oxidation of diamond surfaces in O2 studied by diffuse reflectance Fourier-transform infrared photoacoustic studies of hydrogenated diamond surfaces. J Chem Soc, Faraday Trans 89:749–751

    Article  CAS  Google Scholar 

  • Arnault JC, Petit T, Girard HA, Chavanne A, Gesset C, Sennour M, Chaigneau M (2011) Surface chemical modifications and surface reactivity of nanodiamonds hydrogenated by CVD plasma. Phys Chem Chem Phys 13:11481–11487

    Article  CAS  Google Scholar 

  • Bacakova L, Grausova L, Vacik J, Fraczek A, Blazewicz S, Kromka A, Vanecek M, Svorcik V (2007) Improved adhesion and growth of human osteoblast-like MG 63 cells on biomaterials modified with carbon nanoparticles. Diam Relat Mater 16:2133–2140

    Article  CAS  Google Scholar 

  • Band IM, Kharitonov YuI, Trzhaskovskaya MB (1979) Photoionization cross sections and photoelectron angular distributions for X-ray line energies in the range 0.132–4.509 keV targets: 1 ≤ Z ≤ 100. At Data Nucl Data Tables 23:443–505

    Article  CAS  Google Scholar 

  • Barras A, Lyskawa J, Szunerits S, Woisel P, Boukherroub R (2011) Direct functionalization of nanodiamond particles using dopamine derivatives. Langmuir 27:12451–12457

    Article  CAS  Google Scholar 

  • Beamson G, Briggs D (1992) High energy XPS of organic polymers: the scienta ESCA 300 database. Wiley, Chichester

  • Chen M, Pierstorff ED, Lam R, Li SY, Huang H, Osawa E, Ho D (2009) Nanodiamond-mediated delivery of water-insoluble therapeutics. ACS Nano 3:2016–2022

    Article  CAS  Google Scholar 

  • Faklaris O, Joshi V, Irinopoulou T, Tauc P, Sennour M, Girard H, Gesset C, Arnault JC, Thorel A, Boudou JP, Curmi PA, Treussart F (2009) Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. ACS Nano 3:3955–3962

    Article  CAS  Google Scholar 

  • Fu CC, Lee HY, Chen K, Lim TS, Wu HY, Lin PK, Wei PK, Tsao PH, Chang HC, Fann W (2007) Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci USA 104(3):727–73223

    Article  CAS  Google Scholar 

  • Girard HA, Arnault JC, Perruchas S, Saada S, Gacoin T, Boilot JP, Bergonzo P (2010) Hydrogenation of nanodiamonds using MPCVD: a new route toward organic functionalization. Diam Relat Mater 19:1117–1123

    Article  CAS  Google Scholar 

  • Girard HA, Petit T, Perruchas S, Gacoin T, Gesset C, Arnault JC, Bergonzo P (2011) Surface properties of hydrogenated nanodiamonds: a chemical investigation. Phys Chem Chem Phys 13:11517–11523

    Article  CAS  Google Scholar 

  • Grieten L, Janssens SD, Ethirajan A, Vanden Bon N, Ameloot M, Michiels L, Haenen K, Wagner P (2011) Real-time study of protein adsorption on thin nanocrystalline diamond. Phys Status Solidi A 208:2093–2098

    Article  CAS  Google Scholar 

  • Haerle R, Riedo E, Pasquarello A, Baldereschi A (2001) Sp(2)/sp(3) hybridization ratio in amorphous carbon from C 1s core-level shifts: X-ray photoelectron spectroscopy and first-principles calculation. Phys Rev B 65:045101–045109

    Article  Google Scholar 

  • Jiang T, Xu K (1995) FTIR study of ultradispersed diamond powder synthesized by explosive detonation. Carbon 33:1663–1671

    Article  CAS  Google Scholar 

  • Jiricek P (1994) Measurement of the transmission function of the hemispherical energy analyzer of ADES 400 electron spectrometer. Czech J Phys 44:261–267

    Article  CAS  Google Scholar 

  • Kozak H, Kromka A, Ukraintsev E, Houdkova J, Ledinsky M, Vanecek M, Rezek B (2009) Detecting sp2 phase on diamond surfaces by atomic force microscopy phase imaging and its effects on surface conductivity. Diam Relat Mater 18:722–725

    Article  CAS  Google Scholar 

  • Krátká M, Kromka A, Ukraintsev E, Ledinský M, Brož A, Kalbacova M, Rezek B (2012) Function of thin film nanocrystalline diamond-protein SGFET independent of grain size. Sens Actuators, B 20:239–245

    Article  Google Scholar 

  • Krueger A, Boedeker T (2008) Deagglomeration and functionalisation of detonation nanodiamond with long alkyl chains. Diam Relat Mater 17:1367–1370

    Article  CAS  Google Scholar 

  • Krueger A, Lang D (2012) Functionality is key: recent progress in the surface modification of nanodiamond. Adv Funct Mater 22:890–906

    Article  CAS  Google Scholar 

  • Krueger A, Liang Y, Jarre G, Stegk J (2006) Surface functionalisation of detonation diamonds suitable for biological applications. J Mater Chem 16:2322–2328

    Article  CAS  Google Scholar 

  • Lang D, Krueger A (2011) The Plato reaction on diamond: surface functionazation by formation of pyrrolidine rings. Diam Relat Mater 20:101–104

    Article  CAS  Google Scholar 

  • Lesiak B, Zemek J, Jiricek P, Stobinski L (2009) Temperature modification of oxidized multiwall carbon nanotubes studied by electron spectroscopy methods. Phys Status Solidi B 246:2645–2649

    Article  CAS  Google Scholar 

  • Nemanich RJ, Solin SA, Martin RM (1981) Light scattering study of boron nitride microcrystals. Phys Rev B 23:6348–6356

    Article  CAS  Google Scholar 

  • Osswald S, Yushin G, Mochalin V, Kucheyev SO, Gogotsi Y (2006) Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J Am Chem Soc 128:11635–11642

    Article  CAS  Google Scholar 

  • Pecheva E, Pramatarova L, Fingarova D, Hikov T, Dineva I, Karagyozova Z, Stavrev S (2009) Advanced materials for metal implant coatings. J Optoelectron Adv Mater 11:1323–1326

    CAS  Google Scholar 

  • Petit T, Arnault JC, Girard HA, Sennour M, Bergonzo P (2011) Early stages of surface graphitization on nanodiamond probed by X-ray photoelectron spectroscopy. Phys Rev B 84:233407

    Article  Google Scholar 

  • Popov C, Kulish W, Bliznakov S, Mednikarov B, Spasov G, Pirov J, Jelinek M, Kocourek T, Zemek J (2007) Characterization of the bonding structure of nanocrystalline diamond and amorphous carbon films prepared by plasma assisted techniques. Appl Phys A 89:209–212

    Article  CAS  Google Scholar 

  • Rezek B, Nebel CE (2005) Kelvin force microscopy on diamond surfaces and devices. Diam Relat Mater 14:466–469

    Article  CAS  Google Scholar 

  • Rezek B, Sauerer C, Nebel CE, Stutzmann M, Ristein J, Ley L, Snidero E, Bergonzo P (2003) Fermi level on hydrogen terminated diamond surfaces. Appl Phys Lett 82:2266–2268

    Article  CAS  Google Scholar 

  • Richter H, Wang ZP, Ley L (1981) The one phonon Raman spectrum in microcrystalline silicon. Solid State Comun 39:625–629

    Article  CAS  Google Scholar 

  • Schrand AM, Huang H, Carlson C, Schlager JJ, Osawa E, Hussain SM, Dai L (2007) Are diamond nanoparticles cytotoxic? J Phys Chem B 111:2–7

    Article  CAS  Google Scholar 

  • Shenderova O, Koscheev A, Zaripov N, Petrov I, Skryabin Y, Detkov P, Turner S, Van Tendeloo G (2011) Surface chemistry and properties of ozone-purified detonation nanodiamonds. J Phys Chem C 115:9827–9837

    Article  CAS  Google Scholar 

  • Socrates G (2001) Infrared and Raman characteristic group frequencies: tables and charts, 3rd edn. Wiley, Chichester

    Google Scholar 

  • Stehlik S, Petit T, Girard HA, Arnault JC, Sennour M, Kromka A, Rezek B (2013) Nanoparticles assume electrical potential according to substrate, size and surface termination. Langmuir 29(5):1634–1641. doi:10.1021/la304472w

    Article  CAS  Google Scholar 

  • Takahashi K, Tanga M, Takai O, Okamura H (2003) DNA preservation using diamond chips. Diam Relat Mater 12:572–576

    Article  CAS  Google Scholar 

  • Tanuma S, Powell CJ, Penn DR (2011) Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV range. Surf Interface Anal 43:689–713

    Article  CAS  Google Scholar 

  • Verveniotis E, Kromka A, Ledinsky M, Rezek B (2012) How nanocrystalline diamond films become charged in nanoscale. Diam Relat Mater 24:39–43

    Article  CAS  Google Scholar 

  • Yang NJ, Uetsuka H, Nebel CE (2009) DNA-sensing with nano-textured diamond electrodes. Diam Relat Mater 18:592–595

    Article  CAS  Google Scholar 

  • Yu Q, Kim YJ, Ma H (2006) Plasma treatment of diamond nanoparticles for dispersion improvement in water. Appl Phys Lett 88:231503–231505

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the projects P205/12/P331 and P108/12/0910 of Czech Science Foundation and project KONTAKT II LH12186 of Ministry of education, young and sports. This work occurred in frame of the LNSM infrastructure. We acknowledge a kind assistance of T. Izak with Raman spectroscopy, O. Babchenko for assistance during diamond nanoparticles processing, and K. Knizek for XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kozak.

Additional information

Special Issue Editors: Juan Manuel Rojo, Vasileios Koutsos

This article is part of the topical collection on Nanostructured Materials 2012

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozak, H., Remes, Z., Houdkova, J. et al. Chemical modifications and stability of diamond nanoparticles resolved by infrared spectroscopy and Kelvin force microscopy. J Nanopart Res 15, 1568 (2013). https://doi.org/10.1007/s11051-013-1568-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1568-7

Keywords

Navigation