Skip to main content

Advertisement

Log in

Synthesis and characterization of graphene-based nanocomposites with potential use for biomedical applications

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In the present study, graphene-based nanocomposites containing different amounts of nanofiller dispersed into Bis-GMA/tetraethyleneglycol diacrylate (Bis-GMA/TEGDA) polymer matrix have been prepared. In particular, the graphene dispersions, produced at high concentration (up to 6 mg/ml) by simple sonication of graphite in TEGDA monomer, have been used for the direct preparation of nanocomposite copolymers with Bis-GMA. The morphology of the obtained nanocomposites has been investigated as well as their thermal and mechanical properties. SEM analyses have clearly shown that graphene deeply interacts with the polymer matrix, thus resulting in a reinforcing effect on the material as proved by compression and hardness tests; at variance, graphene does not seem to affect the glass transition temperature of the obtained polymer networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguilar MR, Elvira C, Gallardo A, Vázquez B, Román JS (2007) Smart polymers and their applications as biomaterials. In: Ashammakhi N, Reis R, Chiellini E (eds) Topics in tissue engineering vol 3. University of Oulu, Oulu, Finland

  • Aizawa T, Souda R, Otani S, Ishizawa Y, Oshima C (1990) Anomalous bond of monolayer graphite on transition-metal carbide surfaces. Phys Rev Lett 64:768–771

    Article  CAS  Google Scholar 

  • Alzari V, Nuvoli D, Scognamillo S, Piccinini M, Gioffredi E, Malucelli G, Marceddu S, Sechi M, Sanna V, Mariani A (2011a) Graphene-containing nanocomposite hydrogels of poly(N-isopropylacrylamide) prepared by frontal polymerization. J Mater Chem 21:8727–8733

    Article  CAS  Google Scholar 

  • Alzari V, Nuvoli D, Sanna R, Scognamillo S, Piccinini M, Kenny JM, Malucelli G, Mariani A (2011b) In situ production of high filler content graphene-based polymer nanocomposites by reactive processing. J Mater Chem 21:16544–16549

    Article  CAS  Google Scholar 

  • Ansari S, Giannelis EP (2009) Functionalized graphene sheetpoly(vinylidene fluoride) conductive nanocomposites. J Polym Sci Part B Polym Phys 47:888–897

    Article  CAS  Google Scholar 

  • Antonucci JM, Stansbury JW (1997) Molecular designed dental polymer. In: Arshady R (ed) Desk reference of functional polymers: synthesis and application. American Chemical Society, Publication, pp 719–738

    Google Scholar 

  • Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Ning Lau C (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  CAS  Google Scholar 

  • Ballo AM, Närhi TO, Akca EA, Ozenm T, Syrjänen SM, Lassila LVJ, Vallittu PK (2011) Prepolymerized vs. in situ-polymerized fiber-reinforced composite implants—a pilot study. J Dent Res 90:263–267

    Article  CAS  Google Scholar 

  • Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196

    Article  CAS  Google Scholar 

  • Boukhvalov DW, Katsnelson MI (2008) Modeling of graphite oxide. J Am Chem Soc 130:10697–10701

    Article  CAS  Google Scholar 

  • Bowen RL (1962) Dental filling material comprising vinyl silane treated fused silica and a binder consisting of the reaction product of bisphenol and glycidyl acrylate. U.S. Patent 3066112

  • Bowen RL (1963) Properties of a silica-reinforced polymer for dental restorations. J Am Dent Assoc 66:57–64

    CAS  Google Scholar 

  • Bowen RL (1965) Method of preparing a monomer having phenoxy and methacrylate groups linked by hydroxy glycerol groups. U.S. Patent 3179623

  • Chen M, Chen C, Hsu S, Sun SH, Su W (2005) Low shrinkage light curable nanocomposite for dental restorative material. Dent Mater 22:138–145

    Article  CAS  Google Scholar 

  • Coleman JN (2013) Liquid exfoliation of defect-free graphene. Acc Chem Res 46:14–22

    Article  CAS  Google Scholar 

  • Fan H, Wang L, Zhao K, Li N, Shi Z, Ge Z, Jin Z (2010) Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules 11:2345–2351

    Article  CAS  Google Scholar 

  • Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Phys Rev Lett 97:187401–187403

    Article  CAS  Google Scholar 

  • Garboczi EJ, Snyder KA, Douglas JF, Thorpe MF (1995) Geometrical percolation-threshold of overlapping ellipsoids. Phys Rev E 52:819–828

    Article  CAS  Google Scholar 

  • Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison JH, Scardaci V, Ferrari AC, Coleman JN (2008) High-yeld production of graphene by liquid-phase exfoliation of graphite. Nat Nantechnol 3:563–568

    Article  CAS  Google Scholar 

  • Khan U, O’Neill A, Lotya M, De S, Coleman JN (2010) High-concentration solvent exfoliation of graphene. Small 6:864–871

    Article  CAS  Google Scholar 

  • Khan U, Porwal H, O’Neill A, Nawaz K, May P, Coleman JN (2011) Solvent-exfoliated graphene at extremely high concentration. Langmuir 27:9077–9082

    Article  CAS  Google Scholar 

  • Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer. nanocomposites. Macromolecules 43:6515–6530

    Article  CAS  Google Scholar 

  • Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  CAS  Google Scholar 

  • Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482

    Article  CAS  Google Scholar 

  • Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H (2008) Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol 3:538–542

    Article  CAS  Google Scholar 

  • Lu X, Yu M, Huang H, Ruoff RS (1999) Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10:269–272

    Article  CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  CAS  Google Scholar 

  • Nuvoli D, Valentini L, Alzari V, Scognamillo S, Bittolo Bon S, Piccinini M, Illescas J, Mariani A (2011) High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. J Mater Chem 21:3428–3431

    Article  CAS  Google Scholar 

  • Nuvoli D, Alzari V, Sanna R, Scognamillo S, Piccinini M, Peponi L, Kenny JM, Mriani A (2012) The production of concentrated dispersions of few-layer graphene by the direct exfoliation of graphite in organosilanes. Nanoscale Res Lett 7:674–680

    Article  Google Scholar 

  • Palussière J, Berge J, Gangi A, Cotten A, Pasco A, Bertagnoli R, Jaksche H, Carpeggiani P, Deramond H (2005) Clinical results of an open prospective study of a bis-GMA composite in percutaneous vertebral augmentation. Eur Spine J 14:982–991

    Article  Google Scholar 

  • Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  CAS  Google Scholar 

  • Ponomarenko L, Schedin F, Katsnelson MI, Yang R, Hill EW, Novoselov KS, Geim AK (2008) Chaotic Dirac billiard in graphene quantum dots. Science 320:356–358

    Article  CAS  Google Scholar 

  • Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25

    Article  CAS  Google Scholar 

  • Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890

    Article  CAS  Google Scholar 

  • Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331

    Article  CAS  Google Scholar 

  • Roberson TM, Heyman H, Swift EJ (2002) Sturdevant’s art and science of operative dentistry, 4th edn. Mosby Elsevier, St Louis

    Google Scholar 

  • Sanchez VC, Jachak A, Hurt RH, Kane AB (2012) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25:15–34

    Google Scholar 

  • Sanna R, Sanna D, Alzari V, Nuvoli D, Scognamillo S, Piccinini M, Lazzari M, Gioffredi E, Malucelli G, Mariani A (2012) Synthesis and characterization of graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-vinylcaprolactam) prepared by frontal polymerization. J Pol Sci Part A Polym Chem 50:4110–4118

    Article  CAS  Google Scholar 

  • Sasidharan A, Panchakarla LS, Chandran P, Menon D, Nair S, Rao CNR, Koyakutty M (2011) Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 3:2461–2464

    Google Scholar 

  • Sasidharan A, Panchakarla LS, Chandran P, Menon D, Nair S, Rao CNR, Koyakutty M (2012) Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations. Nanotechnology 23:395101–395111

    Article  Google Scholar 

  • Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655

    Article  CAS  Google Scholar 

  • Scognamillo S, Gioffredi E, Piccinini M, Lazzari M, Alzari V, Nuvoli D, Sanna R, Piga D, Malucelli G, Mariani A (2012) Synthesis and characterization of nanocomposites of thermoplastic polyurethane with both graphene and graphene nanoribbon fillers. Polymer 53:4019–4024

    Article  CAS  Google Scholar 

  • Slonczewski JC, Weiss PR (1958) Band structure of graphite. Phys Rev 109:272–279

    Article  CAS  Google Scholar 

  • Sofo JO, Chaudhari AS, Barber GD (2007) Graphane: a two-dimensional hydrocarbon. Phys Rev B 75:153401–153404

    Article  Google Scholar 

  • Soh MS, Sellinger A, Yap AUJ (2006) Dental nanocomposites. Curr Nanosci 2:373–381

    Article  CAS  Google Scholar 

  • Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  Google Scholar 

  • Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  • Tuusa SM, Peltola MJ, Tirri T, Lassila LV, Vallittu PK (2007) Frontal bone defect repair with experimental glass-fiber-reinforced composite with bioactive glass granule coating. J Biomed Mater Res B Appl Biomater 82:149–155

    Google Scholar 

  • Verdejo R, Barroso-Bujans F, Rodriguez-Perez MA, de Saja JA, Lopez-Manchado MA (2008) Functionalized graphene sheet filled silicone foam nanocomposites. J Mater Chem 18:2221–2226

    Article  CAS  Google Scholar 

  • Wang X, Zhi L, Müllen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8:323–327

    Article  CAS  Google Scholar 

  • Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009) N-doping of graphene through electrothermal reactions with ammonia. Science 324:768–771

    Article  CAS  Google Scholar 

  • Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8:2277–2282

    Article  CAS  Google Scholar 

  • Zhao DS, Moritz N, Laurila P, Mattila R, Lassila LV, Strandberg N, Mäntylä T, Vallittu P, Aro HT (2009) Development of a multi-component fiber-reinforced composite implant for load-sharing conditions. Med Eng Phys 31:461–469

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially financed by the Italian Ministry of the University and Research (PRIN).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giulio Malucelli or Alberto Mariani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nuvoli, D., Alzari, V., Sanna, R. et al. Synthesis and characterization of graphene-based nanocomposites with potential use for biomedical applications. J Nanopart Res 15, 1512 (2013). https://doi.org/10.1007/s11051-013-1512-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1512-x

Keywords

Navigation