Skip to main content
Log in

Synthesis, optical, and electrical properties of RNA-mediated Ag/PVA nanobiocomposites

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Synthesis of RNA-templated Ag/PVA nanobiocomposites of controlled morphology was investigated. Surface morphologies of the composites and size distributions of the nanofillers were analyzed by means of field emission scanning electron microscopy. Interfacial interaction between the different components was followed by monitoring the surface plasmon resonance of silver nanoparticles in nanobiocomposites. The band gap approximations suggested semiconducting behavior of the nanobiocomposites with larger band gap than that of the conventional semiconductors. RNA-stabilized Ag/PVA nanobiocomposites revealed the presence of well-dispersed and spherical Ag nanoparticles in PVA matrix with a size distribution of 14–23 nm. IR spectra of the nanobiocomposites demonstrated the complex behavior of RNA with Ag nanoparticles in the polymer matrix due to the presence of noncovalent interactions (electrostatic/van der Waals) between RNA, Ag, and PVA molecules. The effects of the loading of RNA-capped Ag nanoparticles on the electrical properties of PVA were also observed by analyzing I–V characteristics of nanobiocomposites which displayed a large increase (≈89 %) at low concentration relative to neat PVA. The drastic improvement in optical and electrical properties of the nanobiocomposites indicated their promising applications in nanobiotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  CAS  Google Scholar 

  • An J, Yuan X, Luo Q, Wang D (2010) Preparation of chitosan-graft-(methyl methacrylate)/Ag nanocomposite with antimicrobial activity. Polym Int 59:62–70

    Article  CAS  Google Scholar 

  • Arakawa H, Neault JF, Tajmir-Riahi HA (2001) Silver (I) complexes with DNA and RNA studied by Fourier transform infra red spectroscopy and capillary electrophoresis. Biophys J 81:1580–1587

    Article  CAS  Google Scholar 

  • Basu S, Jana S, Pande S, Pal T (2008) Interaction of DNA bases with silver nanoparticles: assembly quantified through SPRS and SERS. J Colloid Interface Sci 321:288–293

    Article  CAS  Google Scholar 

  • Berti L, Burley GA (2008) Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles. Nat Nanotechnol 3:81–87

    Article  CAS  Google Scholar 

  • Bozanic DK, Trandafilovic LV, Luyt AS, Djokovic V (2010) Green synthesis and optical properties of silver–chitosan complexes and nanocomposites. React Funct Polym 70:869–873

    Article  CAS  Google Scholar 

  • Bronstein LM, Goerigk G, Kostylev M, Pink M, Khotina IA, Valetsky PM (2004) Structure and catalytic properties of Pt-modified hyper-cross-linked polystyrene exhibiting hierarchical porosity. J Phys Chem B 108:18234–18242

    Article  CAS  Google Scholar 

  • Chatterjee J, Haik Y, Chen CJ (2004) A biocompatible magnetic film: synthesis and characterization. Biomag Res Technol 2:1–3

    Article  Google Scholar 

  • Chaudhary V, Thakur AK, Bhowmick AK (2011) Improved optical and electrical response in metal–polymer nanocomposites for photovoltaic applications. J Mater Sci 46:6096–6105

    Article  CAS  Google Scholar 

  • Chen PC, Mwakwari SC, Oyelere AK (2008) Gold nanoparticles: from nanomedicine to nanosensing. Nanotechnol Sci Appl 1:45–66

    CAS  Google Scholar 

  • Datta H, Bhowmick AK, Singha NK (2009) Methacrylate/acrylate ABA triblock copolymers by atom transfer radical polymerization; their properties and application as a mediator for organically dispersible gold nanoparticles. Polymer 50:3259–3268

    Article  CAS  Google Scholar 

  • Finnegan EJ, Matzke MA (2003) The small RNA world. J Cell Sci 116:4689–4693

    Article  CAS  Google Scholar 

  • Firkowska I, Giannona S, Rojas-Chapana JA, Luecke K, Brustle O, Giersig M (2008) Biocompatible nanomaterials and nanodevices promising for biomedical applications. In: Giersig M, Khomutov, GB (eds) Nanomaterials for application in medicine and biology. NATO Science and Security Series B: Physics and Biophysics Springer, Dordrecht, pp 1–15

  • He X, Lin X, Wang K, Chen L, Wu P, Yuan Y (2004) Biocompatible core–shell nanoparticles for biomedicine. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, Norwood, pp 235–253

    Google Scholar 

  • Hentze MW, Izaurralde E, Seraphin B (2000) A new era for the RNA world. EMBO Rep 1:394–398

    Article  CAS  Google Scholar 

  • Kim D, Park S, Lee JH, Jeong YY, Jon S (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 129:7661–7665

    Article  CAS  Google Scholar 

  • Kumar A, Jakhmola A (2007) RNA-mediated fluorescent Q-PbS nanoparticles. Langmuir 23:2915–2918

    Article  CAS  Google Scholar 

  • Kumar A, Kumar V (2008) RNA-templated colloidal CdS nanostructures. J Phys Chem C 112:3633–3640

    Article  CAS  Google Scholar 

  • Levy R (2004) Rational and combinatorial design of peptide capping ligands for gold nanoparticles. J Am Chem Soc 126:10076–10084

    Article  CAS  Google Scholar 

  • Li S, Zhang Y, Xu X, Zhang L (2011) Triple helical polysaccharide-induced good dispersion of silver nanoparticles in water. Biomacromolecules 2:2864–2871

    Article  Google Scholar 

  • Mbhele ZH, Salemane MG, Sittert CGCEV, Nedeljkovic JM, Djokovic V, Luyt AS (2003) Fabrication and characterization of silver–polyvinyl alcohol nanocomposites. Chem Mater 15:5019–5024

    Article  CAS  Google Scholar 

  • Nath S, Ghosh SK, Kundu S, Praharaj S, Panigrahi S, Pal T (2006) Is gold really softer than silver? HSAB principle revisited. Nanopart Res 8:111–116

    Article  CAS  Google Scholar 

  • Osada Y, Gong J-P (1998) Soft and wet materials: polymer gels. Adv Mater 10:827–837

    Article  CAS  Google Scholar 

  • Pankey GA, Sabath LD (2004) Clinical relevance of bacteriostatic versus bactericidal mechanism of action in the treatment of gram positive bacteria infections. Clin Infect Dis 38:864–870

    Article  CAS  Google Scholar 

  • Park S-J, Lazarides AA, Mirkin CA, Brazis PW, Kannewurf CR, Letsinger RL (2000) The electrical properties of gold nanoparticle assemblies linked by DNA. Angew Chem Int Ed 39:3845–3848

    Article  CAS  Google Scholar 

  • Routh P, Mukherjee P, Nandi AK (2009) RNA-poly(o-methoxyaniline) hybrid templated growth of nanoparticles and nanojacketing: physical and electronic properties. Langmuir 26:5093–5100

    Article  Google Scholar 

  • Roy N, Bhowmick AK (2012) In situ preparation, morphology and electrical properties of carbon nanofiber/polydimethylsiloxane nanocomposites. J Mater Sci 47:272–281

    Article  CAS  Google Scholar 

  • Streetman B, Banerjee S (2000) Solid state electronic devices, 5th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Tiwari PM, Vig K, Dennis VA, Singh SR (2011) Functionalized gold nanoparticles and their biomedical applications. Nanomaterials 1:31–63

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of IIT, Patna for performing this study is gratefully acknowledged. VC is thankful to the Director, IIT Patna, for providing the laboratory and instrumentation facilities. Prof. A. K. Bhowmick is thankful to DST, New Delhi and Commonwealth of Australia for providing Indo-Australia Strategic Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Bhowmick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhary, V., Bhowmick, A.K. Synthesis, optical, and electrical properties of RNA-mediated Ag/PVA nanobiocomposites. J Nanopart Res 15, 1508 (2013). https://doi.org/10.1007/s11051-013-1508-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1508-6

Keywords

Navigation