Skip to main content
Log in

Influence of pH on the transport of silver nanoparticles in saturated porous media: laboratory experiments and modeling

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Given the ubiquity of silver nanoparticles (AgNPs) and their potential for toxic effects on both humans and the environment, it is important to understand their environmental fate and transport. The purpose of this study is to gain information on the transport properties of commercial AgNP suspensions in a glass bead-packed column under saturated flow conditions at different solution pH levels. Commercial AgNPs were characterized using high-resolution transmission electron microscopy, dynamic light scattering, X-ray photoelectron spectroscopy, ultraviolet visible spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. Transport data were collected at different pH levels (4, 6.5, 9, and 11) at fixed ionic strength. Capture of AgNPs increased as the pH of the solution increased from 4 to 6.5. Further increase in pH to 9 and 11 decreased the attachment of AgNPs to the glass beads. AgNP concentration versus time breakthrough data were simulated using an advection–dispersion model incorporating both irreversible and reversible attachment. In particular, a reversible attachment model is required to simulate breakthrough curve tailing at near neutral pH, when attachment is most significant. The laboratory and modeling study reveals that for natural groundwaters, AgNP transport in porous media may be retarded due to capture; but ultimately, most of the mass may be slowly released over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med Oxford 56(5):300–306. doi:10.1093/occmed/kq1051

    Article  CAS  Google Scholar 

  • Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139. doi:10.1021/es7032718

    Article  CAS  Google Scholar 

  • Benn T, Cavanagh B, Hristovski K, Posner JD, Westerhoff P (2010) The release of nanosilver from consumer products used in the home. J Environ Qual 39(6):1875–1882. doi:10.2134/jeq2009.0363

    Article  CAS  Google Scholar 

  • Cumberland SA, Lead JR (2009) Particle size distributions of silver nanoparticles at environmentally relevant conditions. J Chromatogr A 1216(52):9099–9105. doi:10.1016/j.chroma.2009.07.021

    Article  CAS  Google Scholar 

  • Dever JA, Miller SK, Sechkar EA, Wittberg TN (2008) Space environment exposure of polymer films on the materials international space station experiment: results from MISSE 1 and MISSE 2. High Perform Polym 20(4–5):371–387. doi:10.1177/0954008308089704

    Article  CAS  Google Scholar 

  • El Badawy AM, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44(4):1260–1266. doi:10.1021/es902240k

    Article  Google Scholar 

  • El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45(1):283–287. doi:10.1021/es1034188

    Article  Google Scholar 

  • Elzey S, Grassian VH (2010) Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments. J Nanopart Res 12(5):1945–1958. doi:10.1007/s11051-009-9783-y

    Article  CAS  Google Scholar 

  • Fan CH, Chen YC, Ma HW, Wang GS (2010) Comparative study of multimedia models applied to the risk assessment of soil and groundwater contamination sites in Taiwan. J Hazard Mater 182(1–3):778–786. doi:10.1016/j.jhazmat.2010.06.102

    Article  CAS  Google Scholar 

  • Faunce T, Watal A (2010) Nanosilver and global public health: international regulatory issues. Nanomedicine 5(4):617–632. doi:10.2217/nnm.10.33

    Article  CAS  Google Scholar 

  • Huynh KA, Chen KL (2011) Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environ Sci Technol 45(13):5564–5571. doi:10.1021/es200157h

    Article  CAS  Google Scholar 

  • Impellitteri CA, Tolaymat TM, Scheckel KG (2009) The speciation of silver nanoparticles in antimicrobial fabric before and after exposure to a hypochlorite/detergent solution. J Environ Qual 38(4):1528–1530. doi:10.2134/jeq2008.0390

    Article  CAS  Google Scholar 

  • Kanel SR, Al-Abed SR (2011) Influence of pH on the transport of nanoscale zinc oxide in saturated porous media. J Nanopart Res 13(9):4035–4047. doi:10.1007/s11051-011-0345-8

    Article  CAS  Google Scholar 

  • Kanel SR, Choi H (2007) Transport characteristics of surface-modified nanoscale zero-valent iron in porous media. Water Sci Technol 55(1–2):157–162. doi:10.2166/wst.2007.002

    CAS  Google Scholar 

  • Kanel SR, Nepal D, Manning B, Choi H (2007) Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation. J Nanopart Res 9(5):725–735. doi:10.1007/s11051-007-9225-7

    Article  CAS  Google Scholar 

  • Kanel SR, Goswami RR, Clement TP, Barnett MO, Zhao D (2008) Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media. Environ Sci Technol 42(3):896–900. doi:10.1021/es071774j

    Article  CAS  Google Scholar 

  • Khlebtsov BN, Khlebtsov NG (2011) On the measurement of gold nanoparticle sizes by the dynamic light scattering method. Colloid J 73(1):118–127. doi:10.1134/s1061933x11010078

    Article  CAS  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3(1):95–101. doi:10.1016/j.nano.2006.12.001

    Article  CAS  Google Scholar 

  • Lin S, Cheng Y, Bobcombe Y, Jones K, Liu J, Wiesner MR (2011) Deposition of silver nanoparticles in geochemically heterogeneous porous media: predicting affinity from surface composition analysis. Environ Sci Technol 45(12):5209–5215. doi:10.1021/es2002327

    Article  CAS  Google Scholar 

  • Lin SH, Cheng YW, Liu J, Wiesner MR (2012) Polymeric coatings on silver nanoparticles hinder autoaggregation but enhance attachment to uncoated surfaces. Langmuir 28(9):4178–4186. doi:10.1021/la202884f

    Article  CAS  Google Scholar 

  • Liu XY, Wazne M, Christodoulatos C, Jasinkiewicz KL (2009) Aggregation and deposition behavior of boron nanoparticles in porous media. J Colloid Interface Sci 330(1):90–96. doi:10.1016/j.jcis.2008.10.028

    Article  CAS  Google Scholar 

  • Moon KS, Dong H, Maric R, Pothukuchi S, Hunt A, Li Y, Wong CP (2005) Thermal behavior of silver nanoparticles for low-temperature interconnect applications. J Electron Mater 34(2):168–175. doi:10.1007/s11664-005-0229-8

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627. doi:10.1126/science.1114397

    Article  CAS  Google Scholar 

  • Pang LP, Goltz M, Close M (2003) Application of the method of temporal moments to interpret solute transport with sorption and degradation. J Contam Hydrol 60(1–2):123–134. doi:10.1016/s0169-7722(02)00061-x

    Article  CAS  Google Scholar 

  • Petosa AR, Jaisi DP, Quevedo IR, Elimelech M, Tufenkji N (2010) Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ Sci Technol 44(17):6532–6549. doi:10.1021/es100598h

    Article  CAS  Google Scholar 

  • Sadjadi MS, Farhadyar N, Zare K (2009) Preparation and characterization of the transparent SiO2-Ag/PVP nanocomposite mirror film for the infrared region by sol-gel method. Superlattices Microstruct 46(3):483–489. doi:10.1016/j.spmi.2009.06.004

    Article  CAS  Google Scholar 

  • Song JE, Phenrat T, Marinakos S, Xiao Y, Liu J, Wiesner MR, Tilton RD, Lowry GV (2011) Hydrophobic interactions increase attachment of gum arabic- and PVP-coated Ag nanoparticles to hydrophobic surfaces. Environ Sci Technol 45(14):5988–5995. doi:10.1021/es200547c

    Article  CAS  Google Scholar 

  • Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408(5):999–1006. doi:10.1016/j.scitotenv.2009.11.003

    Article  CAS  Google Scholar 

  • USEPA (1997) Method 3015A: microwave assisted acid digestion of aqueous samples and extracts. SW846 test methods for evaluating solid waste, physical/chemical methods, 2nd edn

  • USEPA (2010) Emerging contaminants nanomaterials. Unites States Environmental Protection Agency

  • USEPA (2012) USEPA website [online]; [Accessed May 25 2012]; Available from World Wide Web:http://water.epa.gov/. vol 2012. USEPA

  • Wijnhoven SWP, Peijnenburg W, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, Van de Meent D, Dekkers S, De Jong WH, Van Zijverden M, Sips A, Geertsma RE (2009) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3(2):U109–U178. doi:10.1080/17435390902725914

    Article  Google Scholar 

  • Yang Z, Liu ZW, Allaker RP, Reip P, Oxford J, Ahmad Z, Ren G (2010) A review of nanoparticle functionality and toxicity on the central nervous system. J R Soc Interface 7:S411–S422. doi:10.1098/rsif.2010.0158.focus

    Article  CAS  Google Scholar 

  • Yao K, Habibian MT, O’Melia CR (1971) Water and wastewater filtration: concepts and applications. Environ Sci Technol 5(11):1105–1112

    Google Scholar 

  • Zhao T, Sun R, Yu SH, Zhang ZJ, Zhou LM, Huang HT, Du RX (2010) Size-controlled preparation of silver nanoparticles by a modified polyol method. Colloids Surf A Physicochem Eng Aspects 366(1–3):197–202. doi:10.1016/j.colsurfa.2010.06.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Air Force Medical Support Agency’s Research and Development Division (AFMSA/SGRS), Department of Defense Funding Document No. F1ATD41003G004. Authors acknowledge Dr. Daniel Felker for training student in ICP analysis and gratefully acknowledge the technical assistance efforts of undergraduate students Nicole Jacques and Chelsea Riegel. The authors thank Barb Miller (University of Dayton Research Institute, Dayton, OH) and the NEST Laboratory, (University of Dayton, Dayton, OH) for assisting with the HRTEM analysis. This work was performed while Dr. Sushil R. Kanel was in the National Research Council Fellowship Program at the Air Force Institute of Technology, Wright Patterson Air Force Base, OH. Any opinions expressed in this paper are those of the author(s) and do not, necessarily, reflect the official positions and policies of the USEPA, the United States Air Force, Department of Defense, or the U.S. Government. Any mention of products or trade names does not constitute recommendation for use by the USEPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil R. Kanel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flory, J., Kanel, S.R., Racz, L. et al. Influence of pH on the transport of silver nanoparticles in saturated porous media: laboratory experiments and modeling. J Nanopart Res 15, 1484 (2013). https://doi.org/10.1007/s11051-013-1484-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1484-x

Keywords

Navigation