Skip to main content
Log in

Seed-mediated synthesis of gold nanorods: control of the aspect ratio by variation of the reducing agent

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Seed-mediated growth methods involving reduction of tetrachloroaurate(III) with ascorbic acid are common for the synthesis of gold nanorods. This study shows, however, that simply by appropriate choice of the reducing agent a drastic influence on the aspect ratio can be attained. Weaker reducing agents, such as dihydroxybenzene isomers (hydroquinone, catechol or resorcinol) or glucose can increase the aspect ratio of the nanorods by an order of magnitude, up to values as high as 100 (nanowires). The increase in aspect ratio is mainly a consequence of an increase in length of the particles (up to 1–3 μm). This effect is probably associated with a decrease in the reduction rate of gold(III) species by dihydroxybenzenes or glucose compared to ascorbic acid. The reduction potential of the reducing agents strongly depends on the pH value, and related effects on the dimensions of the nanoparticles are also reflected in this study. The nanorods exhibited penta-twinned nature without noteworthy defects (e.g. stacking faults and dislocations).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brintzinger H (1937) Ascorbinsäure und Isoascorbinsäure als Reduktionsmittel zur Herstellung kolloiddisperser Lösungen von Gold, Palladium, Platin, Silber, Selen, Tellur, Molybdänblau und Wolframblau. Kolloid-Z 78:22–23

    Article  CAS  Google Scholar 

  • Busbee BD, Obare SO, Murphy CJ (2003) An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater 15:414–416

    Article  CAS  Google Scholar 

  • Chang S–S, Shih C-W, Chen C-D, Lai W-C, Wang CRC (1999) The shape transition of gold nanorods. Langmuir 15:701–709

    Article  CAS  Google Scholar 

  • El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264

    Article  CAS  Google Scholar 

  • Esumi K, Matsuhisa K, Torigoe K (1995) Preparation of rodlike gold particles by UV irradiation using cationic micelles as a template. Langmuir 11:3285–3287

    Article  CAS  Google Scholar 

  • Gao J, Bender CM, Murphy CJ (2003) Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution. Langmuir 19:9065–9070

    Article  CAS  Google Scholar 

  • Garbowski L (1903) Anwendung höherwerthiger Phenole, Phenolsäuren, Aldehyde und Phenolaldehyde zur Herstellung der Hydrosole von Gold, Platin und Silber. Ber chem Ges 36:1215–1220

    Article  Google Scholar 

  • García MA, Bouzas V, Carmona N (2011) Influence of stirring in the synthesis of gold nanorods. Mater Chem Phys 127:446–450

    Article  Google Scholar 

  • Garg N, Scholl C, Mohanty A, Jin R (2010) The role of bromide ions in seeding growth of Au nanorods. Langmuir 26:10271–10276

    Article  CAS  Google Scholar 

  • Gokel GW (2004) Dean’s handbook of organic chemistry. McGraw-Hill, New York

    Google Scholar 

  • Grzelczak M, Sánchez-Iglesias A, Rodríguez-González B, Alvarez-Puebla R, Pérez-Juste J, Liz-Marzán LM (2008) Influence of iodide ions on the growth of gold nanorods: tuning tip curvature and surface plasmon resonance. Adv Funct Mater 18:3780–3786

    Article  CAS  Google Scholar 

  • Henrich F (1903) Ueber eine Methode zur Herstellung colloïdaler Metalllösungen. Ber chem Ges 36:609–616

    Article  CAS  Google Scholar 

  • Isaacs NS, Eldik R (1997) A mechanistic study of the reduction of quinones by ascorbic acid. J Chem Soc Perkin Trans 2(2):1465–1467

    Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001a) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys Chem B 105:4065–4067

    Article  CAS  Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001b) Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem Mater 13:2313–2322

    Article  CAS  Google Scholar 

  • Jiang XC, Pileni MP (2007) Gold nanorods: influence of various parameters as seeds, solvent, surfactant on shape control. Colloids Surf A 295:228–232

    Article  CAS  Google Scholar 

  • Jiang XC, Brioude A, Pileni MP (2006) Gold nanorods: limitations on their synthesis and optical properties. Colloids Surf. A 277:201–206

    Article  CAS  Google Scholar 

  • Johnson CJ, Dujardin E, Davis SA, Murphy CJ, Mann S (2002) Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J Mater Chem 12:1765–1770

    Article  CAS  Google Scholar 

  • Kang SK, Chah S, Yun CY, Yi J (2003) Aspect ratio controlled synthesis of gold nanorods. Korean J Chem Eng 20:1145–1148

    Article  CAS  Google Scholar 

  • Keul HA, Moeller M, Bockstaller MR (2008) Effect of solvent isotopic replacement on the structure evolution of gold nanorods. J Phys Chem C 112:13483–13487

    Article  CAS  Google Scholar 

  • Khanal BP, Zubarev ER (2008) Purification of high aspect ratio gold nanorods: complete removal of platelets. J Am Chem Soc 130:12634–12635

    Article  CAS  Google Scholar 

  • Kim F, Song JH, Yang P (2002) Photochemical synthesis of gold nanorods. J Am Chem Soc 124:14316–14317

    Article  CAS  Google Scholar 

  • Koeppl S, Solenthaler C, Caseri W, Spolenak R (2011) Towards a reproducible synthesis of high aspect ratio gold nanorods. J Nanomater. doi:10.1155/2011/515049

    Google Scholar 

  • Koeppl S, Koch FPV, Caseri W, Spolenak R (2012) Usage of the isotope effect for the synthesis of ultrahigh aspect ratio gold nanorods. J Mater Chem 22:14594–14601

    Article  CAS  Google Scholar 

  • Liu MZ, Guyot-Sionnest P (2005) Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J Phys Chem B 109:22192–22200

    Article  CAS  Google Scholar 

  • Liu F-K, Chang Y-C, Ko F-H, Chu T-C (2004) Microwave rapid heating for the synthesis of gold nanorods. Mater Lett 58:373–377

    Article  CAS  Google Scholar 

  • Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8:1739–1746

    Article  CAS  Google Scholar 

  • Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 330:377–445

    Article  Google Scholar 

  • Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) J Phys Chem B 109:13857–13870

    Article  CAS  Google Scholar 

  • Nikoobakht B, El-Sayed MA (2001) Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir 17:6368–6374

    Article  CAS  Google Scholar 

  • Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  • Pal T, De S, Jana NR, Pradhan N, Mandal R, Pal A (1998) Organized media as redox catalysts. Langmuir 14:4724–4730

    Article  CAS  Google Scholar 

  • Park K (2006) School of polymer, textile and fiber engineering. Georgia Institute of Technology, Atlanta, p 241

    Google Scholar 

  • Park HJ, Ah CS, Kim W-J, Choi IS, Lee K-P, Yun WS (2006) Temperature-induced control of aspect ratio of gold nanorods. J Vac Sci Technol A 24:1323–1326

    Article  CAS  Google Scholar 

  • Pérez-Juste J, Liz-Marzán LM, Carnie S, Chan DYC, Mulvaney P (2004) Electric-field-directed growth of gold nanorods in aqueous surfactant solutions. Adv Funct Mater 14:571–579

    Article  Google Scholar 

  • Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901

    Article  Google Scholar 

  • Richter DJB (1802) Ueber die neueren Gegenstände der Chymie. Eilftes Stück. Vorzüglich über die Glucine, Agust-Erde und einige besondere Eigenschaften des Goldes. Johan Friedrich Korn der Ältere, Breslau

  • Sau TK, Murphy CJ (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20:6414–6420

    Article  CAS  Google Scholar 

  • Sau TK, Murphy CJ (2007) Role of ions in the colloidal synthesis of gold nanowires. Philos Mag 87:2143–2158

    Article  CAS  Google Scholar 

  • Smith DK, Korgel BA (2008) The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir 24:644–649

    Article  CAS  Google Scholar 

  • Smith DK, Miller NR, Korgel BA (2009) Iodide in CTAB prevents gold nanorod formation. Langmuir 25:9518–9524

    Article  CAS  Google Scholar 

  • Steenken S, Neta P (1982) One-electron redox potentials of phenols. Hydroxy- and aminophenols and related compounds of biological interest. J Phys Chem 86:3661–3667

    Article  CAS  Google Scholar 

  • Wirtz M, Yu S, Martin CR (2002) Template synthesized gold nanotube membranes for chemical separations and sensing. Analyst 127:871–879

    Article  CAS  Google Scholar 

  • Wu H-Y, Huang W-L, Huang MH (2007) Direct high-yield synthesis of high aspect ratio gold nanorods. Cryst Growth Design 7:831–835

    Article  CAS  Google Scholar 

  • Yacamán MJ, Ascencio JA, Canizal G (2001) Observation of surface relaxation surface steps and surface reconstruction in gold nanorods. Surf Sci 486:L449–L453

    Article  Google Scholar 

  • Yu Y–Y, Chang S–S, Lee C-L, Wang CR (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661–6664

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We cordially thank Stephan Frank (MATLAB routine for size evaluation) and Martin Süess (HRTEM) for technical assistance, Irene Bräunlich for fruitful discussions, the electron microscopy center (EMEZ) of ETH Zurich for support and the Swiss National Science Foundation (SNSF) for financial support under Project no. 200021-113463.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Caseri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koeppl, S., Ghielmetti, N., Caseri, W. et al. Seed-mediated synthesis of gold nanorods: control of the aspect ratio by variation of the reducing agent. J Nanopart Res 15, 1471 (2013). https://doi.org/10.1007/s11051-013-1471-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1471-2

Keywords

Navigation