Skip to main content
Log in

Recent trend in graphene for optoelectronics

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This study analyzes the scientific knowledge diffusion paths of graphene for optoelectronics (GFO), where graphene offers wide applications due to its thinness, high conductivity, excellent transparency, chemical stability, robustness, and flexibility. Our investigation is based on the main path analysis which establishes the citation links among the literature data in order to trace the significant sequence of knowledge development in this emerging field. We identify the main development paths of GFO up to the year 2012, along which a series of influential papers in this field are identified. The main path graph shows that knowledge diffusion occurs in key subareas, including reduced graphene oxide, chemical vapor deposition, and exfoliation techniques, which are developed for the preparation and applications of GFO. The applications cover solar cells, laser devices, sensing devices, and LCD. In addition, the main theme of GFO research evolves in sequence from small-graphene-sample preparation, to large-scale film growth, and onto prototype device fabrication. This evolution reflects a strong industrial demand for a new transparent–conductive film technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Graphene AND (optoelectronic* OR photonic* OR “transparent electrode*” OR “transparent conduct*” OR photovoltaic* OR photodetect* OR “touch panel*” OR “touch screen*” OR “liquid crystal*” OR “flexible display*” OR “ultrafast laser*” OR “fiber laser*” OR absorber* OR “terahertz device*” OR “terahertz emission” OR “optical limit*” OR “light-emitting device*” OR “optical device*” OR “ultrafast optical*” OR photoconduct* OR photocurrent* OR “solar cell*” OR photoluminescence* OR “indium tin oxide” OR “ITO” OR “thin-film transistor”) (*denotes the wildcard used in most search engines).

References

  • Allen MJ, Tung VC, Kaner RB (2010) Honeycomb Carbon: a review of graphene. Chem Rev 110(1):132–145

    Article  CAS  Google Scholar 

  • Bao QL, Zhang H, Wang Y, Ni ZH, Yan YL, Shen ZX, Loh KP, Tang DY (2009) Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater 19(19):3077–3083

    Article  CAS  Google Scholar 

  • Batagelj V (2003) Efficient algorithms for citation network analysis, University of Ljubljana, Institute of Mathematics, Physics and Mechanics, Preprint series, 841–897

  • Batagelj V, Mrvar A (1998) Pajek-program for large network analysis. Connections 21(2):47–57

    Google Scholar 

  • Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3):463–470

    Article  CAS  Google Scholar 

  • Bi H, Huang FQ, Liang J, Xie XM, Jiang MH (2011a) Transparent conductive graphene films synthesized by ambient Pressure chemical vapor deposition used as the front electrode of CdTe solar cells. Adv Mater 23(28):3202

    Article  CAS  Google Scholar 

  • Bi H, Huang FQ, Liang J, Xie XM, Tang YF, Lu XJ, Xie XM, Jiang MH (2011b) Large-scale preparation of highly conductive three dimensional graphene and its applications in CdTe solar cells. J Mater Chem 21(43):17366–17370

    Article  CAS  Google Scholar 

  • Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW, Geim AK, Novoselov KS (2008) Graphene-based liquid crystal device. Nano Lett 8(6):1704–1708

    Article  Google Scholar 

  • Bockrath M, Cobden DH, McEuen PL, Chopra NG, Zettl A, Thess A, Smalley RE (1997) Single-electron transport in ropes of carbon nanotubes. Science 275(5308):1922–1925

    Article  CAS  Google Scholar 

  • Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611–622

    Article  CAS  Google Scholar 

  • Bornmann L, Daniel HD (2005) Does the h-index for ranking of scientists really work? Scientometrics 65(3):391–392

    Article  Google Scholar 

  • Brumfiel G (2012) Britain’s big bet on graphene. Nature 488:140–141

    Article  CAS  Google Scholar 

  • De S, Coleman JN (2010) Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4(5):2713–2720

    Article  CAS  Google Scholar 

  • Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen SBT, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448(7152):457–460

    Article  CAS  Google Scholar 

  • Eda G, Chhowalla M (2010) Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv Mater 22:2392–2415

    Article  CAS  Google Scholar 

  • Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3(5):270–274

    Article  CAS  Google Scholar 

  • Egghe L (2006) Theory and practice of the g-index. Scientometrics 69(1):131–152

    Article  Google Scholar 

  • Eigler S (2009) A new parameter based on graphene for characterizing transparent conductive materials. Carbon 47(12):2936–2939

    Article  CAS  Google Scholar 

  • Garfield E, Sher IH, Torpie RJ (1964) The use of citation data in writing the history of science. The Institute for Scientific Information, Philadelphia

    Google Scholar 

  • Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  CAS  Google Scholar 

  • Gunes F, Shin HJ, Biswas C, Kim ES, Chae SJ, Choi JY, Lee YH (2010) Layer-by-layer doping of few-layer graphene film. ACS Nano 4(8):4595–4600

    Article  CAS  Google Scholar 

  • Hayashi H, Lightcap IV, Tsujimoto M, Takano M, Umeyama T, Kamat PV, Imahori H (2011) Electron transfer cascade by organic/inorganic ternary composites of porphyrin, zinc oxide nanoparticles, and reduced graphene oxide on a tin oxide electrode that exhibits efficient photocurrent generation. J Am Chem Soc 133(20):7684–7687

    Article  CAS  Google Scholar 

  • He Q, Sudibya HG, Yin Z, Wu S, Li H, Boey F, Huang W, Chen P, Zhang H (2010) Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. ACS Nano 6:3201–3208

    Article  Google Scholar 

  • Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568

    Article  CAS  Google Scholar 

  • Hirsch JE (2005) An index to quantify an individual’s scientific research output. PNAS 102(46):16569–16572

    Article  CAS  Google Scholar 

  • Hummon NP, Doreian P (1989) Connectivity in a citation network: the development of DNA theory. Soc Netw 11(1):39–63

    Article  Google Scholar 

  • Jung I, Dikin DA, Piner RD, Ruoff RS (2008) Tunable electrical conductivity of individual graphene oxide sheets reduced at “low” temperatures. Nano Lett 8(12):4283–4287

    Article  CAS  Google Scholar 

  • Kamat PV (2011) Graphene-based nanoassemblies for energy conversion. J Phys Chem Lett 2(3):242–251

    Article  CAS  Google Scholar 

  • Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710

    Article  CAS  Google Scholar 

  • Li D, Mueller MB, Gilje S, Kaner RB, Wallace GG (2008a) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105

    Article  CAS  Google Scholar 

  • Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H (2008b) Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol 3(9):538–542

    Article  CAS  Google Scholar 

  • Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009a) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314

    Article  CAS  Google Scholar 

  • Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner Rd D, Colombo L, Ruoff RS (2009b) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9(12):4359–4363

    Article  CAS  Google Scholar 

  • Liu JS, Lu LYY (2012) An integrated approach for the main pace analysis: the development of the Hirch index as an example. J Am Soc Inf Sci Technol 63(3):528–542

    Article  Google Scholar 

  • Liu J, Wang YG, Qu ZS, Zheng LH, Su LB, Xu J (2012) Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3 laser. Laser Phys Lett 9(1):15–19

    Article  CAS  Google Scholar 

  • Liu JS, Lu LYY, Lu WM, Lin BJY (2013) Data envelopment analysis 1978–2010: A citation-based literature survey. Omega- Int J Manage Sci 41(1):3–15. doi: 10.1016/j.omega.2010.12.006

  • Mingers J (2009) Measuring the research contribution of management academics using the Hirsch-index. J Oper Res Soc 60(9):1143–1153

    Article  Google Scholar 

  • Nair RR et al (2008) Fine structure constant defines transparency of graphene. Science 320:1308

    Article  CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  • Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Nat Acad Sci U.S.A. 102:10451–10453

    Article  CAS  Google Scholar 

  • Popa D, Sun Z, Torrisi F, Hasan T, Wang F, Ferrari AC (2010) Sub 200 fs pulse generation from a graphene mode-locked fiber laser. Appl Phys Lett 97(20):203106

    Article  Google Scholar 

  • Popa D, Sun Z, Hasan T, Torrisi F, Wang F, Ferrari AC (2011) Graphene Q-switched, tunable fiber laser. Appl Phys Lett 98(7):073106

    Article  Google Scholar 

  • Qi X, Pu KY, Zhou X, Li H, Liu B, Boey F, Huang W, Zhang H (2010) Conjugated-polyelectrolyte-functionalized reduced graphene oxide with excellent solubility and stability in polar solvents. Small 6(5):663–669

    Article  CAS  Google Scholar 

  • Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35

    Article  CAS  Google Scholar 

  • Saad G (2010) Applying the h-index in exploring bibliometric properties of elite marketing scholars. Scientometrics 83(2):423–433

    Article  CAS  Google Scholar 

  • Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  CAS  Google Scholar 

  • Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    Article  CAS  Google Scholar 

  • Su Q, Pang SP, Alijani V, Li C, Feng XL, Mullen K (2009) Composites of graphene with large aromatic molecules. Adv Mater 21(31):3191

    Article  CAS  Google Scholar 

  • Sun ZP, Popa D, Hasan T, Torrisi F, Wang FQ, Kelleher EJR, Travers JC, Ferrari AC (2010) A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser. Nano Res 3(9):653–660

    Article  CAS  Google Scholar 

  • Tan WD, Su CY, Knize RJ, Xie GQ, Li LJ, Tang DY (2010) Mode locking of ceramic Nd: yttrium aluminum garnet with graphene as a saturable absorber. Appl Phys Lett 96(3):031106

    Article  Google Scholar 

  • Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, Dekker C (1997) Individual single-wall carbon nanotubes as quantum wires. Nature 386:474–477

    Article  CAS  Google Scholar 

  • Verspagen B (2007) Mapping technological trajectories as patent citation networks: a study on the history of fuel cell research. Adv Complex Syst 10(1):93–115

    Article  Google Scholar 

  • Wang X, Zhi L, Muellen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8(1):323–327

    Article  CAS  Google Scholar 

  • Wang Y, Tong SW, Xu XF, Ozyilmaz B, Loh KP (2011) Interface Engineering of Layer-by-Layer Stacked Graphene Anodes for High-Performance Organic Solar Cells. Adv Mater 23(13):1514–1518

    Article  CAS  Google Scholar 

  • Wassei JK, Kaner RB (2010) Graphene, a promising transparent conductor. Mater Today 13(3):52–59

    Article  CAS  Google Scholar 

  • Watcharotone S, Dikin DA, Stankovich S, Piner R, Jung I, Dommett GHB, Evmenenko G, Wu SE, Chen SF, Liu CP, Nguyen SBT, Ruoff RS (2007) Graphene-silica composite thin films as transparent conductors. Nano Lett 7(7):1888–1892

    Article  CAS  Google Scholar 

  • Wojcik A, Kamat PV (2010) Reduced graphene oxide and porphyrin. An interactive affair in 2-D. ACS Nano 4(11):6697–6706

    Article  CAS  Google Scholar 

  • Xu JL, Li XL, Wu YZ, Hao XP, He JL, Yang KJ (2011) Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser. Opt Lett 36(10):1948–1950

    Article  CAS  Google Scholar 

  • Yin Z, Wu S, Zhou X, Huang X, Zhang Q, Boey F, Zhang H (2010) Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 6(2):307–312

    Article  CAS  Google Scholar 

  • Zhang H, Tang DY, Zhao LM, Bao QL, Loh KP (2009) Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt Express 17(20):17630–17635

    Article  CAS  Google Scholar 

  • Zhang H, Tang DY, Knize RJ, Zhao LM, Bao QL, Loh KP (2010) Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. Appl Phys Lett 96(11):111112

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank two anonymous reviewers for their constructive comments that have majorly improved the accuracy and readability of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YB., Liu, J.S. & Lin, P. Recent trend in graphene for optoelectronics. J Nanopart Res 15, 1454 (2013). https://doi.org/10.1007/s11051-013-1454-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1454-3

Keywords

Navigation