Skip to main content
Log in

In(OH)3 and In2O3 nanorice and microflowers: morphology transformation and optical properties

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this work, In(OH)3 and In2O3 nanostructures with controllable complex morphologies were successfully synthesized through a simple hydrothermal process followed by annealing. The In(OH)3 nanostructures were synthesized using urea as the alkaline source at a relatively low temperature without any templates or surfactants. The morphology transformation of In(OH)3 from nanorice to microflowers was observed. The In(OH)3 nanorice are 180 nm in diameter and 550 nm in length, the microflowers are about 3 μm in diameter and composed of thin nanoflakes with 4-nm thickness. In2O3 with similar morphology was formed by annealing In(OH)3 precursors. The nanostructures were characterized using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Our results suggest that a new nucleation-growth-etching-regrowth mechanism can explain the morphology transformation from nanorice to flower-like frameworks. Raman spectrum and photoluminescence (PL) properties of In2O3 were also measured, and a 3-nm blue-shift of PL spectrum was observed due to the thinness of the nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Avivi S, Mastai Y, Gedanken A (2000) Sonohydrolysis of In3+ ions: formation of needlelike particles of indium hydroxide. Chem Mater 12:1229–1233

    Article  CAS  Google Scholar 

  • Curreli M, Li C, Sun YH, Lei B, Gundersen MA, Thompson ME, Zhou CW (2005) Selective functionalization of In2O3 nanowire mat devices for biosensing applications. J Am Chem Soc 127:6922–6923

    Article  CAS  Google Scholar 

  • Huang JH, Gao L (2006) Anisotropic growth of In(OH)3 nanocubes to nanorods and nanosheets via a solution-based seed method. Cryst Growth Des 6:1528–1532

    Article  CAS  Google Scholar 

  • Jean ST, Her YC (2010) Growth mechanism and photoluminescence properties of In2O3 nanowires. Cryst Growth Des 10:2104–2110

    Article  CAS  Google Scholar 

  • Kityk IV, Ebothe J, Liu QS, Sun ZY, Fang JY (2006) Drastic increase in the second-order optical susceptibilities for monodisperse In2O3 nanocrystals incorporated into PMMA matrices. Nanotechnology 17:1871–1877

    Article  CAS  Google Scholar 

  • Kuo CY, Lu SY, Wei TY (2005) In2O3 nanorod formation induced by substrate structure. J Cryst Growth 285:400–407

    Article  CAS  Google Scholar 

  • Lei B, Li C, Zhang DH, Zhou QF, Shung KK, Zhou CW (2004) Nanowire transistors with ferroelectric gate dielectrics: enhanced performance and memory effects. Appl Phys Lett 84:4553–4555

    Article  CAS  Google Scholar 

  • Li C, Zhang DH, Lei B, Liu XL, Zhou CW (2003a) Surface treatment and doping dependence of In2O3 nanowires as ammonia sensors. J Phys Chem B 107:12451–12455

    Article  CAS  Google Scholar 

  • Li C, Zhang DH, Liu XL, Han S, Tang T, Han J, Zhou CW (2003b) In2O3 nanowires as chemical sensors. Appl Phys Lett 82:1613–1615

    Article  CAS  Google Scholar 

  • Li C, Fan WD, Lei B, Zhang DH, Han S, Tang T, Liu XL, Liu ZQ, Asano S, Meyyappan M, Han J, Zhou CW (2004) Multilevel memory based on molecular devices. Appl Phys Lett 84:1949–1951

    Article  CAS  Google Scholar 

  • Li C, Curreli M, Lin H, Lei B, Ishikawa FN, Datar R, Cote RJ, Thompson ME, Zhou CW (2005) Complementary detection of prostate-specific antigen using In2O3 nanowires and carbon nanotubes. J Am Chem Soc 127:12484–12485

    Article  CAS  Google Scholar 

  • Liang CH, Meng GW, Lei Y, Phillipp F, Zhang LD (2001) Catalytic growth of semiconducting In2O3 nanofibers. Adv Mater 13:1330–1333

    Article  CAS  Google Scholar 

  • Nguyen P, Ng HT, Yamada T, Smith MK, Li J, Han J, Meyyappan M (2004) Direct integration of metal oxide nanowire in vertical field-effect transistor. Nano Lett 4:651–657

    Article  CAS  Google Scholar 

  • Ohhata Y, Shinoki F, Yoshida S (1979) Optical properties of r.f. reactive sputtered tin-doped In2O3 films. Thin Solid Films 59:255–261

    Article  CAS  Google Scholar 

  • Pan ZW, Dai ZR, Wang ZL (2000) Nanobelts of semiconducting oxides. Science 291:1947–1949

    Article  Google Scholar 

  • Perez-Maqueda LA, Wang LF, Matijevic E (1998) Nanosize indium hydroxide by peptization of colloidal precipitates. Langmuir 14:4397–4401

    Article  CAS  Google Scholar 

  • Waitz T, Wagner T, Sauerwald T, Kohl C, Tiemann M (2009) Ordered mesoporous In2O3: synthesis by structure replication and application as a methane gas sensor. Adv Funct Mater 19:653–661

    Article  CAS  Google Scholar 

  • Wang ZL (2000) Characterizing the structure and properties of individual wire-like nanoentities. Adv Mater 12:1295–1298

    Article  CAS  Google Scholar 

  • Wang CQ, Chen DR, Jiao XL (2009) Flower-like In2O3 nanostructures derived from novel precursor: synthesis, characterization, and formation mechanism. J Phys Chem C 113:7714–7718

    Article  CAS  Google Scholar 

  • Wu LL, Wu YS, Wei HY, Shi YC, Hu CX (2004) Synthesis and characteristics of NiO nanowire by a solution method. Mater Lett 58:2700–2703

    Article  CAS  Google Scholar 

  • Yan TJ, Wang XX, Long JL, Liu P, Fu XL, Zhang GY, Fu XZ (2008) Urea-based hydrothermal growth, optical and photocatalytic properties of single-crystalline In(OH)3 nanocubes. J Colloid Interface Sci 325:425–431

    Article  CAS  Google Scholar 

  • Yin WY, Su J, Cao MH, Ni CY, Cloutier SG, Huang ZG, Ma X, Ren L, Hu CW, Wei BQ (2009) In(OH)3 and In2O3 micro/nanostructures: controllable NaOAc-assisted microemulsion synthesis and raman properties. J Phys Chem C 113:19493–19499

    Article  CAS  Google Scholar 

  • Yu DB, Yu SH, Zhang SY, Zuo J, Wang DB, Qian YT (2003) Metastable hexagonal In2O3 nanofibers templated from InOOH nanofibers under ambient pressure. Adv Funct Mater 13:497–501

    Article  CAS  Google Scholar 

  • Zhang QL (1998) Series books of inorganic chemistry. Science Press, Beijing

    Google Scholar 

  • Zhang DH, Liu ZQ, Li C, Tang T, Liu XL, Han S, Lei B, Zhou CW (2004) Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett 4:1919–1924

    Article  CAS  Google Scholar 

  • Zheng MJ, Zhang LD, Li GH (2001) Ordered indium-oxide nanowire arrays and their photoluminescenece properties. Appl Phys Lett 79:839–841

    Article  CAS  Google Scholar 

  • Zheng YH, Cheng Y, Wang YS, Bao F, Zhou LH, Wei XF, Zhang YY, Zheng Q (2006) Quasicubic alpha-Fe2O3 nanoparticles with excellent catalytic performance. J Phys Chem B 110:3093–3097

    Article  CAS  Google Scholar 

  • Zhu HL, Yao KH, Wo YH, Wang NY, Wang LN (2004) Hydrothermal synthesis of single crystalline In(OH)3 nanorods and their characterization. Semicond Sci Technol 19:1020–1023

    Article  CAS  Google Scholar 

  • Zhu H, Wang XL, Yang F, Yang XR (2008) Template-free, surfactantless route to fabricate In(OH)3 monocrystalline nanoarchitectures and their conversion to In2O3. Cryst Growth Des 8:950–956

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 50872084, 51072124) and the Program for New Century Excellent Talents in University (No. NCET100605). We wish to thank the staff of the Analytical and Testing Center of SCU for their assistance in sample characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, W., Liu, Y., Mei, Z. et al. In(OH)3 and In2O3 nanorice and microflowers: morphology transformation and optical properties. J Nanopart Res 15, 1452 (2013). https://doi.org/10.1007/s11051-013-1452-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1452-5

Keywords

Navigation