Skip to main content
Log in

TiO2 nanoparticle-induced ROS correlates with modulated immune cell function

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Design of non-toxic nanoparticles will be greatly facilitated by understanding the nanoparticle-cell interaction mechanism on a cell function level. Mast cells are important cells for the immune system’s first line of defense, and we can utilize their exocytotic behavior as a model cellular function as it is a conserved process across cell types and species. Perturbations in exocytosis can also have implications for whole organism health. One proposed mode of toxicity is nanoparticle-induced reactive oxygen species (ROS), particularly for titanium dioxide (TiO2) nanoparticles. Herein, we have correlated changes in ROS with the perturbation of the critical cell function of exocytosis, using UV light to induce greater levels of ROS in TiO2 exposed cells. The primary culture mouse peritoneal mast cells (MPMCs) were exposed to varying concentrations of TiO2 nanoparticles for 24 h. ROS content was determined using 2,7-dihydrodichlorofluorescein diacetate (DCFDA). Cellular viability was determined with the MTT and Trypan blue assays, and exocytosis was measured by the analytical electrochemistry technique of carbon-fiber microelectrode amperometry. MPMCs exposed to TiO2 nanoparticles experienced a dose-dependent increase in total ROS content. While there was minimal impact of ROS on cellular viability, there is a correlation between ROS amount and exocytosis perturbation. As nanoparticle-induced ROS increases, there is a significant decrease (45 %) in the number of serotonin molecules being released during exocytosis, increase (26 %) in the amount of time for each exocytotic granule to release, and decrease (28 %) in the efficiency of granule trafficking and docking. This is the first evidence that nanoparticle-induced ROS correlates with chemical messenger molecule secretion, possibly making a critical connection between functional impairment and mechanisms contributing to that impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abraham SN, John AL (2010) Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol 10(6):440–452. doi:10.1038/nri2782

    Article  CAS  Google Scholar 

  • Akhtar MJ, Ahamed M, Kumar S, Siddiqui H, Patil G, Ashquin M, Ahmad I (2010) Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells. Toxicology 276(2):95–102. doi:10.1016/j.tox.2010.07.010

    Article  CAS  Google Scholar 

  • Akirav EM, Lebastchi J, Galvan EM, Henegariu O, Akirav M, Ablamunits V, Lizardi PM, Herold KC (2011) Detection of β cell death in diabetes using differentially methylated circulating DNA. Proc Natl Acad Sci 108(47):19018–19023. doi:10.1073/pnas.1111008108

    Article  CAS  Google Scholar 

  • Barillet S, Simon-Deckers A, Herlin-Boime N, Mayne-L’Hermite M, Reynaud C, Cassio D, Gouget B, Carriere M (2010) Toxicological consequences of TiO2, sic nanoparticles and multi-walled carbon nanotubes exposure in several mammalian cell types: an in vitro study. J Nanopart Res 12(1):61–73. doi:10.1007/s11051-009-9694-y

    Article  CAS  Google Scholar 

  • Bernheim MLC, Ottolenghi A, Bernheim F (1957) The anti-oxidant effect of serotonin. Biochim Biophys Acta 23:431–432

    Article  CAS  Google Scholar 

  • Bishop AE, Pietroletti R, Taat CW, Brummelkamp WH, Polak JM (1987) Increased populations of endocrine cells in Crohn’s ileitis. Virchows Arch A Pathol Anat Histopathol 410(5):391–396

    Article  CAS  Google Scholar 

  • Cahill PS, Walker QD, Finnegan JM, Mickelson GE, Travis ER, Wightman RM (1996) Microelectrodes for the measurement of catecholamines in biological systems. Anal Chem 68(18):3180–3186. doi:10.1021/ac960347d

    Article  CAS  Google Scholar 

  • Cho EC, Zhang Q, Xia Y (2011) The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol 6(6):385–391

    Article  CAS  Google Scholar 

  • Eom H-J, Choi J (2009) Oxidative stress of silica nanoparticles in human bronchial epithelial cell, beas-2b. Toxicol In Vitro 23(7):1326–1332

    Article  CAS  Google Scholar 

  • Fisichella M, Dabboue H, Bhattacharyya S, Saboungi M-L, Salvetat J-P, Hevor T, Guerin M (2009) Mesoporous silica nanoparticles enhance MTT formazan exocytosis in HeLa cells and astrocytes. Toxicol In Vitro 23(4):697–703. doi:10.1016/j.tiv.2009.02.007

    Article  CAS  Google Scholar 

  • Gorski W, Aspinwall CA, Lakey JRT, Kennedy RT (1997) Ruthenium catalyst for amperometric determination of insulin at physiological ph. J Electroanal Chem 425(1–2):191–199

    CAS  Google Scholar 

  • Hayden SC, Allam NK, El-Sayed MA (2010) TiO2 nanotube/CdS hybrid electrodes: extraordinary enhancement in the inactivation of escherichia coli. J Am Chem Soc 132(41):14406–14408. doi:10.1021/ja107034z

    Article  CAS  Google Scholar 

  • Horie M, Nishio K, Fujita K, Kato H, Endoh S, Suzuki M, Nakamura A, Miyauchi A, Kinugasa S, Yamamoto K, Iwahashi H, Murayama H, Niki E, Yoshida Y (2010) Cellular responses by stable and uniform ultrafine titanium dioxide particles in culture-medium dispersions when secondary particle size was 100 nm or less. Toxicol In Vitro 24(6):1629–1638. doi:10.1016/j.tiv.2010.06.003

    Article  CAS  Google Scholar 

  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19(7):975–983. doi:10.1016/j.tiv.2005.06.034

    Article  CAS  Google Scholar 

  • Kim I-S, Baek M, Choi S-J (2010) Comparative cytotoxicity of Al2o3, CeO2, TiO2 and ZnO nanoparticles to human lung cells. J Nanosci Nanotechnol 10(5):3453–3458. doi:10.1166/jnn.2010.2340

    Article  CAS  Google Scholar 

  • Liao K-H, Lin Y-S, Macosko CW, Haynes CL (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater & Interfaces 3(7):2607–2615

    Google Scholar 

  • Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther D, Stark WJ (2005) Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 39(23):9370–9376

    Article  CAS  Google Scholar 

  • Limbach LK, Bereiter R, MuÌller E, Krebs R, GaÌlli R, Stark WJ (2008) Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency. Environ Sci Technol 42(15):5828–5833

    Article  CAS  Google Scholar 

  • Love SA, Haynes CL (2010) Assessment of functional changes in nanoparticle-exposed neuroendocrine cells with amperometry: exploring the generalizability of nanoparticle-vesicle matrix interactions. Anal Bioanal Chem 398(2):677–688

    Article  CAS  Google Scholar 

  • Marquis BJ, McFarland AD, Braun KL, Haynes CL (2008) Dynamic measurement of altered chemical messenger secretion after cellular uptake of nanoparticles using carbon-fiber microelectrode amperometry. Anal Chem 80(9):3431–3437

    Article  CAS  Google Scholar 

  • Marquis BJ, Maurer-Jones MA, Braun KL, Haynes CL (2009) Amperometric assessment of functional changes in nanoparticle-exposed immune cells: varying au nanoparticle exposure time and concentration. Analyst 134(11):2293–2300. doi:10.1039/b920639f

    Article  CAS  Google Scholar 

  • Marquis BJ, Maurer-Jones MA, Ersin OE, Lin YS, Haynes CL (2011) The bench scientist’s perspective on the unique considerations in nanoparticle regulation. J Nanopart Res 13:1389–1400

    Article  Google Scholar 

  • Matsui K, Karasaki M, Segawa M, Hwang SY, Tanaka T, Ogino C, Kondo A (2010) Biofunctional TiO2 nanoparticle-mediated photokilling of cancer cells using UV irradiation. MedChemComm 1(3):209–211

    Article  CAS  Google Scholar 

  • Maurer-Jones MA, Lin YS, Haynes CL (2010) Functional assessment of metal oxide nanoparticle toxicity in immune cells. ACS Nano 4(6):3363–3373. doi:10.1021/nn9018834

    Article  CAS  Google Scholar 

  • Metcalfe DD, Thompson HL, Klebanoff SJ, Henderson WR Jr (1990) Oxidative degradation of rat mast cell heparin proteoglycan. Biochem J 272(1):51–57

    CAS  Google Scholar 

  • Moller MN, Lancaster JR Jr., Denicola A (2008) The interaction of reactive oxygen and nitrogen species with membranes. Curr Top Membr 61:23–42. doi:10.1016/S1063-5823(08)00202-0

    Google Scholar 

  • Monteiro-Riviere NA, Inman AO (2006) Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 44(6):1070–1078. doi:10.1016/j.carbon.2005.11.004

    Article  CAS  Google Scholar 

  • Nohynek GJ, Lademann J, Ribaud C, Roberts MS (2007) Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 37(3):251–277

    Article  CAS  Google Scholar 

  • Oberdorster G (2009) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267(1):89–105. doi:10.1111/j.1365-2796.2009.02187.x

    Article  Google Scholar 

  • Pan Z, Lee W, Slutsky L, Clark RAF, Pernodet N, Rafailovich MH (2009) Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small 5(4):511–520

    Article  CAS  Google Scholar 

  • Parkin IP, Palgrave RG (2005) Self-cleaning coatings. J Mater Chem 15(17):1689–1695. doi:10.1039/b412803f

    Article  CAS  Google Scholar 

  • Pihel K, Travis ER, Borges R, Wightman RM (1996) Exocytotic release from individual granules exhibits similar properties at mast and chromaffin cells. Biophys J 71(3):1633–1640. doi:10.1016/S0006-3495(96)79368-2

    Article  CAS  Google Scholar 

  • Project on Emerging Nanotechnologies. (2009). http://nanotechproject.org/. Accessed Dec 2009

  • Pruden AL, Ollis DF (1983) Degradation of chloroform by photoassisted heterogeneous catalysis in dilute aqueous suspensions of titanium dioxide. Environ Sci Technol 17(10):628–631

    Article  CAS  Google Scholar 

  • Rosado JA, González A, Salido GM, Pariente JA (2002) Effects of reactive oxygen species on actin filament polymerisation and amylase secretion in mouse pancreatic acinar cells. Cell Signal 14(6):547–556

    Article  CAS  Google Scholar 

  • Rota C, Liverani L, Spelta F, Mascellani G, Tomasi A, Iannone A, Vismara E (2005) Free radical generation during chemical depolymerization of heparin. Anal Biochem 344(2):193–203

    Article  CAS  Google Scholar 

  • Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL (2006) Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92(1):174–185. doi:10.1093/toxsci/kfj197

    Article  CAS  Google Scholar 

  • Schanen BC, Karakoti AS, Seal S, Drake Iii DR, Warren WL, Self WT (2009) Exposure to titanium dioxide nanomaterials provokes inflammation of an in vitro human immune construct. ACS Nano 3(9):2523–2532

    Article  CAS  Google Scholar 

  • Serpone N, Salinaro A, Emeline A (2001) Deleterious effects of sunscreen titanium dioxide nanoparticles on DNA: efforts to limit DNA damage by particle surface modification. In: Nanoparticles and nanostructured surfaces: novel reporters with biological applications, SPIE, San Jose, pp 86–98

  • Sohaebuddin S, Thevenot P, Baker D, Eaton J, Tang L (2010) Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol 7(1):22. doi:10.1186/1743-8977-7-22

    Article  Google Scholar 

  • Srivastava RK, Rahman Q, Kashyap MP, Lohani M, Pant AB (2011) Ameliorative effects of dimetylthiourea and N-acetylcysteine on nanoparticles induced cyto-genotoxicity in human lung cancer cells-A549. PLoS One 6(9):e25767

    Article  CAS  Google Scholar 

  • Vileno B, Lekka M, Sienkiewicz A, Jeney S, Stoessel G, Lekki J, Forro L, Stachura Z (2007) Stiffness alterations of single cells induced by UV in the presence of nano TiO2. Environ Sci Technol 41(14):5149–5153

    Article  CAS  Google Scholar 

  • Xue C, Liu W, Wu J, Yang X, Xu H (2011) Chemoprotective effect of N-acetylcysteine (NAC) on cellular oxidative damages and apoptosis induced by nano titanium dioxide under UVA irradiation. Toxicol In Vitro 25(1):110–116

    Article  CAS  Google Scholar 

  • Yin H, Casey PS, McCall MJ, Fenech M (2010) Effects of surface chemistry on cytotoxicity, genotoxicity, and the generation of reactive oxygen species induced by ZnO nanoparticles. Langmuir 26(19):15399–15408. doi:10.1021/la101033n

    Article  CAS  Google Scholar 

  • Zhang LW, Yang J, Barron AR, Monteiro-Riviere NA (2009) Endocytic mechanisms and toxicity of a functionalized fullerene in human cells. Toxicol Lett 191(2–3):149–157. doi:10.1016/j.toxlet.2009.08.017

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Sarah Connolly, a summer research undergraduate at the University of Minnesota, for her work on developing ROS assay protocols; and Diana Freeman for her help in isolating the MPMCs. This research was financially supported by a grant from the National Science Foundation (CHE-0645041) and a National Science Foundation Graduate Research Fellowship awarded to M.A.M.-J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christy L. Haynes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11051_2012_1291_MOESM1_ESM.doc

Detailed procedure for CFMA experiments; stability of nanoparticles in various solvent (Figure S1); method and results for APF ROS assay (Figure S2); results for RBL-2H3 DCFDA ROS assay (Figure S3), and UV light degradation of DCFDA molecule (Figure S4). (DOC 276 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurer-Jones, M.A., Christenson, J.R. & Haynes, C.L. TiO2 nanoparticle-induced ROS correlates with modulated immune cell function. J Nanopart Res 14, 1291 (2012). https://doi.org/10.1007/s11051-012-1291-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1291-9

Keywords

Navigation