Skip to main content
Log in

Adsorption and dissociation of molecular hydrogen on the edges of graphene nanoribbons

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The dissociation and adsorption of molecular hydrogen on the edges of graphene nanoribbons of widths of 1.14 and 1.36 nm, is investigated within the density functional formalism. Here, graphene nanoribbons are used as models for the pore walls of some nanoporous carbons (carbide-derived carbons among others) which have been shown to be formed by one-atom thick graphene layers interconnected among them and exhibiting exposed edges (López et al. in J Chem Phys 135:104706, 2011). The aim of this study is to shed some light on the contribution of the edges of the pore walls to the hydrogen storage capacity of nanoporous carbons. Nanoribbons with zigzag and armchair edge terminations have been considered. Molecular hydrogen dissociates and adsorbs atomically at the nanoribbon edges with no or small activation barrier. The adsorption energies per hydrogen molecule are quite large, 2.5 and 5.7 eV for armchair and zigzag edges, respectively. This indicates that the graphene edges are very reactive and will be saturated with hydrogen whenever available. However, under mild conditions of pressure and temperature hydrogen cannot be desorbed from the edges and, therefore, the edges do not contribute to the reversible storage capacity of the material. The magnetic properties of saturated and unsaturated ribbons are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alonso JA, Arellano JS, Molina LM, Rubio A, López MJ (2004) Interaction of molecular and atomic hydrogen with single-wall carbon nanotubes. IEEE Trans Nanotechnol 3:304–310

    Article  Google Scholar 

  • Arellano JS, Molina LM, Rubio A, Alonso JA (2000) Density functional study of adsorption of molecular hydrogen on graphene layers. J Chem Phys 112:8114–8119

    Article  CAS  Google Scholar 

  • Arellano JS, Molina LM, Rubio A, López MJ, Alonso JA (2002) Interaction of molecular and atomic hydrogen with (5,5) and (6,6) single-wall carbon nanotubes. J Chem Phys 117:2281–2288

    Article  CAS  Google Scholar 

  • Barone V, Hod O, Scuseria GE (2006) Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett 6:2748–2754

    Article  CAS  Google Scholar 

  • Cabria I, López MJ, Alonso JA (2007) The optimum average nanopore size for hydrogen storage in carbon nanoporous materials. Carbon 45:2649–2658

    Article  CAS  Google Scholar 

  • Cabria I, López MJ, Alonso JA (2011) Simulation of the hydrogen storage in nanoporous carbons with different pore shapes. Int J Hydrogen Energy 36:10748–10759

    Article  CAS  Google Scholar 

  • DACAPO (2009) See https://wiki.fysik.dtu.dk/dacapo for a description of the total energy code, based on the density functional theory. Last accessed 31 Aug 2012

  • DOE (2009) Multi-year research, development and demonstration plan: planned program activities for 2005–2015. Technical plan-storage. updated april 2009 http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/storage.pdf. Last accessed 31 Aug 2012

  • Fernández-Rosier J, Palacios J (2007) Magnetism in graphene nanoislands. Phys Rev Lett 99:177204

    Article  Google Scholar 

  • Froudakis GE (2002) Hydrogen interaction with carbon nanotubes: a review of ab initio studies. J Phys Condens Matter 14:R453

    Article  CAS  Google Scholar 

  • Fujita M, Wakabayashi K, Nakada K, Kusakabe K (1996) Peculiar localized state in zigzag graphite edge. J Phys Soc Jpn 65:1920–1923

    Article  CAS  Google Scholar 

  • Gogotsi Y, Dash RK, Yushin G, Yildirim T, Laudisio G, Fischer JE (2005) Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. J Am Chem Soc 127:16006–16007

    Article  CAS  Google Scholar 

  • Hammer B, Nørskov JK (1995) Electronic factors determining the reactivity of metal surfaces. Surf Sci 343:211–220

    Article  CAS  Google Scholar 

  • Hod O, Barone V, Scuseria GE (2008) Half-metallic graphene nanodots: a comprehensive first-principles theoretical study. Phys Rev B 77:035411

    Article  Google Scholar 

  • Kobayashi K (1993) Electronic structure of a stepped graphite surface. Phys Rev B 48:1757

    Article  CAS  Google Scholar 

  • Kobayashi Y, Fukui K, Enoki T, Kusakabe K, Kaburagi Y (2005) Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys Rev B 71:193406

    Article  Google Scholar 

  • Koskinen P, Malola S, Hakkinen H (2008) Self-passivating edge reconstructions of graphene. Phys Rev Lett 101:115502

    Article  Google Scholar 

  • Kusakabe K, Maruyama M (2003) Magnetic nanographite. Phys Rev B 67:092406

    Article  Google Scholar 

  • Linares-Solano A, Jordá-Beneyto M, Kunowsky M, Lozano-Castelló D, Suárez-García F, Cazorla-Amorós D (2008) Hydrogen storage in carbon materials. In: Terzyk AP, Gauden PA, Kowalczyk P (eds) Carbon materials: theory and practice. Research Signpost, Kerala, pp 245–281

    Google Scholar 

  • López MJ, Cabria I, Alonso JA (2011) Simulated porosity and electronic structure of nanoporous carbons. J Chem Phys 135:104706

    Article  Google Scholar 

  • Ma Y, Lehtinen P, Foster A, Nieminen R (2004) Magnetic properties of vacancies in graphene and single-walled carbon nanotubes. New J Phys 6:68

    Article  Google Scholar 

  • Mañanes A, Duque F, Ayuela A, López MJ, Alonso JA (2008) Half-metallic finite zigzag single-walled carbon nanotubes from first principles. Phys Rev B 78:035432

    Article  Google Scholar 

  • Monkhorst H, Pack J (1976) Special points for brillouin-zone integration. Phys Rev B 13:5188

    Article  Google Scholar 

  • Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54:17954–17961

    Article  CAS  Google Scholar 

  • Okada S (2008) Energetics of nanoscale graphene ribbons: edge geometries and electronic structures. Phys Rev B 77:041408

    Article  Google Scholar 

  • Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244

    Article  Google Scholar 

  • Pradhan BK, Sumanasekera GU, Adu KW, Romero HE, Williams KA, Eklund PC (2002) Experimental probes of the molecular hydrogen–carbon nanotube interaction. Phys B 323:115–121

    Article  CAS  Google Scholar 

  • Rode AV, Gamaly EG, Christy AG, Gerald JGF, Hyde ST, Elliman RG, Luther-Davies B, Veinger AI, Androulakis J, Giapintzakis J (2004) Unconventional magnetism in all-carbon nanofoam. Phys Rev B 70:054407

    Article  Google Scholar 

  • Shibayama Y, Sato H, Enoki T, Endo M (2000) Disordered magnetism at the metal-insulator threshold in nano-graphite-based carbon materials. Phys Rev Lett 84:1744

    Article  CAS  Google Scholar 

  • Son YW, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97:216803

    Article  Google Scholar 

  • Son YW, Cohen ML, Louie SG (2006) Half-metallic graphene nanoribbons. Nature (Lond) 444:347–349

    Article  CAS  Google Scholar 

  • Tao C, Jiao L, Yazyev OV, Chen YC, Feng J, Zhang X, Capaz RB, Tour JM, Zettl A, Louie SG, Dai H, Crommie MF (2011) Spatially resolving edge states of chiral graphene nanoribbons. Nat Phys 7:616–620

    Article  CAS  Google Scholar 

  • Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:R7892

    Article  Google Scholar 

  • Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  • Wu Q, Yang W (2002) Empirical correction to density functional theory for van der waals interactions. J Chem Phys 116:515–524

    Article  CAS  Google Scholar 

  • Yu D, Lupton E, Liu M, Liu W, Liu F (2008) Collective magnetic behavior of graphene nanohole superlattices. Nano Res 1:56–62

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by MICINN of Spain (Grants MAT2008-06483-C02-01 and MAT2011-22781) and Junta de Castilla y León (Grant VA158A11-2). IC acknowledges support from MEC of Spain through the Ramón y Cajal Program. CB acknowledges support from University of Valladolid through a Research Starting Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María J. López.

Additional information

This article is part of the topical collection on nanomaterials in energy, health and environment

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bores, C., Cabria, I., Alonso, J.A. et al. Adsorption and dissociation of molecular hydrogen on the edges of graphene nanoribbons. J Nanopart Res 14, 1263 (2012). https://doi.org/10.1007/s11051-012-1263-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1263-0

Keywords

Navigation