Skip to main content
Log in

Synthesis of nanoparticles with frog foam nest proteins

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Microemulsions provide an efficient means of synthesizing monodispersed nanoparticles. Recent studies have demonstrated potential problems of surfactant due to the interaction with nanoparticles/precursors. To solve the problems, various types of chemical surfactants have been tested, but natural biosurfactants have not received a great deal of attention in engineering application. Here, we report the formation of microemulsions using frog foam nest protein, ranaspumin-2 (RSN-2), based on the hypothesis that RSN-2 assembles at the water–oil interface as a result of conformational change into an extended form. Fluorescence spectroscopic studies showed that RSN-2 undergoes a reversible transition between extended and globular conformation in foams/microemulsions and aqueous solution, respectively. Microemulsions were formulated with RSN-2 to synthesize 8–10 nm superparamagnetic iron oxide nanoparticles by mixing precursor-containing microemulsions with base-containing microemulsions. RSN-2 proteins were recovered from microemulsions and found to be recycled to make foams and microemulsions. Fluorescence spectroscopic analyses showed that RSN-2 maintained its mechanical agitation-induced amphiphilicity throughout multiple foaming/defoaming processes. These results suggest that conformational flexibility and structural stability of RSN-2 in aggressive environments enable the recycled use of RSN-2, elucidating the cost-effective advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Berry CC, Wells S, Charles S, Curtis ASG (2003) Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24:4551–4557

    Article  CAS  Google Scholar 

  • Capek I (2004) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interface Sci 110:49–74

    Article  CAS  Google Scholar 

  • Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Bawendi J, Frangioni V (2007) Renal clearance of nanoparticles. Nat Biotechnol 25:1165–1170

    Article  CAS  Google Scholar 

  • Cooper A, Kennedy MW (2010) Biofoams and natural protein surfactants. Biophys Chem 151:96–104

    Article  CAS  Google Scholar 

  • Cooper A, Kennedy MW, Fleming RI, Wilson EH, Videler H, Wokosin DL, Su TJ, Green RJ, Lu JR (2005) Adsorption of frog foam nest proteins at the air–water interface. Biophys J 88:2114–2125

    Article  CAS  Google Scholar 

  • Fleming RI, Mackenzie CD, Cooper A, Kennedy MW (2009) Foam nest components of the Túngara frog: a cocktail of proteins conferring physical and biological resilience. Proc R Soc B 276:1787–1795

    Article  CAS  Google Scholar 

  • Frey NA, Peng K, Cheng S, Sun S (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38:2532–2542

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  Google Scholar 

  • Lee SJ, Jeong JR, Shin SC, Kim JC, Chang YH, Lee KH, Kim JD (2004) Magnetic enhancement of iron oxide nanoparticles encapsulated with poly(d,l-lactide-co-glycolide). Colloids Surf A 255:19–25

    Article  Google Scholar 

  • Liao MH, Chen DH (2002) Preparation and characterization of a novel magnetic nano-adsorbent. J Mater Chem 12:3654–3659

    Article  CAS  Google Scholar 

  • López-Quintela MA, Tojo C, Blanco MC, García Rio L, Leis JR (2004) Microemulsion dynamics and reactions in microemulsions. Curr Opin Colloid Interface Sci 9:264–278

    Article  Google Scholar 

  • Lu AH, Salabas E, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  • Luykx DM, Casteleijn MG, Jiskoot W, Westdijk J, Jongen PM (2004) Physicochemical studies on the stability of influenza haemagglutinin in vaccine bulk material. Eur J Pharm Sci 23:65–75

    Article  CAS  Google Scholar 

  • Mackenzie CD, Smith BO, Meister A, Blume A, Zhao X, Lu JR, Kennedy MW, Cooper A (2009) Ranaspumin-2: structure and function of a surfactant protein from the foam nests of a tropical frog. Biophys J 96:4984–4992

    Article  CAS  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Donson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181

    Article  CAS  Google Scholar 

  • Paria S, Khilar KC (2004) A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface. Adv Colloid Interface Sci 110:75–95

    Article  CAS  Google Scholar 

  • Petri-Fink A, Chastellain M, Juillerat-Jeanneret L, Ferrari A, Hofmann H (2005) Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. Biomaterials 26:2685–2694

    Article  CAS  Google Scholar 

  • Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17:2900–2906

    Article  CAS  Google Scholar 

  • Shevchenko EV, Bodnarchuk MI, Kovalenko MV, Talapin DV, Smith RK, Aloni S, Heiss W, Alivisatos AP (2008) Gold/iron oxide core/hollow–shell nanoparticles. Adv Mater 20:4323–4329

    Article  CAS  Google Scholar 

  • Slavik J (1982) Anilinonaphthalene sulfonate as a probe of membrane composition and function. Biochim Biophys Acta 694:1–25

    Article  CAS  Google Scholar 

  • Sun C, Lee JS, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265

    Article  CAS  Google Scholar 

  • Teale FWJ, Weber G (1957) Ultraviolet fluorescence of the aromatic amino acids. Biochem J 65:476–482

    CAS  Google Scholar 

  • Udenfriend S, Stein S, Böhlen P, Dairman W, Leimgruber W, Weigele M (1972) Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science 178:871–872

    Article  CAS  Google Scholar 

  • Wendell D, Todd J, Montemagno C (2010) Artificial photosynthesis in ranaspumin-2 based foam. Nano Lett 10:3231–3236

    Article  CAS  Google Scholar 

  • Yamaura M, Camilo RL, Sampaio LC, Macêdo MA, Nakamura M, Toma HE (2004) Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles. J Magn Magn Mater 279:210–217

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang M, Kohler N (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23:1553–1561

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Andrew Kordahi for technical assistance.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyo-Jick Choi or Carlo D. Montemagno.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, HJ., Ebersbacher, C.F., Myung, N.V. et al. Synthesis of nanoparticles with frog foam nest proteins. J Nanopart Res 14, 1092 (2012). https://doi.org/10.1007/s11051-012-1092-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1092-1

Keywords

Navigation