Skip to main content
Log in

Facile and efficient one-pot solvothermal and microwave-assisted synthesis of stable colloidal solutions of MFe2O4 spinel magnetic nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Well-defined synthesis conditions of high quality MFe2O4 (M = Mn, Fe, Co, Ni, Zn, and Cu) spinel ferrite magnetic nanoparticles, with diameters below 10 nm, have been described based on facile and efficient one-pot solvothermal or microwave-assisted heating procedures. Both methods are reproducible and scalable and allow forming concentrated stable colloidal solutions in polar solvents, but microwave-assisted heating allows reducing 15 times the required annealing time and leads to an enhanced monodispersity of the nanoparticles. Non-agglomerated nanoparticles dispersions have been achieved using a simple one-pot approach where a single compound, triethyleneglycol, behaves at the same time as solvent and capping ligand. A narrow nanoparticle size distribution and high quality crystallinity have been achieved through selected nucleation and growth conditions. High resolution transmission electron microscopy images and electron energy loss spectroscopy analysis confirm the expected structure and composition and show that similar crystal faceting has been formed in both synthetic approaches. The spinel nanoparticles behave as ferrimagnets with a high saturation magnetization and are superparamagnetic at room temperature. The influence of synthesis route on phase purity and unconventional magnetic properties is discussed in some particular cases such as CuFe2O4, CoFe2O4, and ZnFe2O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmed MA, Okasha N, El-Dek SI (2008) Preparation and characterization of nanometric Mn ferrite via different methods. Nanotechnol 19(6):65603–65608

    Article  CAS  Google Scholar 

  • Altincekic TG, Boz I, Baykal A, Kazan S, Topkaya R, Toprak MS (2010) Synthesis and characterization of CuFe2O4 nanorods synthesized by polyol route. J Alloys Compd 18:493–498

    Article  Google Scholar 

  • Bao N, Shen L, Wang Y, Padhan P, Gupta A (2007) A facile thermolysis route to monodisperse ferrite nanocrystals. J Am Chem Soc 129(41):12374–12375

    Article  CAS  Google Scholar 

  • Batlle X, Labarta A (2002) Finite-size effects in fine particles: magnetic and transport properties. J Phys D Appl Phys 35:R15–R42

    Article  CAS  Google Scholar 

  • Batlle X, Obradors X, Medarde M, Rodríguez-Carvajal J, Pernet M, Vallet-Regí M (1993) Surface spin canting in BaFe12O19 fine particles. J Magn Magn Mater 124(1–2):228–238

    Article  CAS  Google Scholar 

  • Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2:1358–1374

    Article  CAS  Google Scholar 

  • Cai W, Wan J (2007) Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J Colloid Interface Sci 305:366–370

    Article  CAS  Google Scholar 

  • Chapelle A, Oudrhiri-Hassani F, Presmanes L, Barnabé A, Tailhades P (2010) CO2 sensing properties of semiconducting copper oxide and spinel ferrite nanocomposite thin film. Appl Surf Sci 256:4715–4719

    Article  CAS  Google Scholar 

  • Corchero J, Villaverde A (2009) Biomedical applications of distally controlled magnetic nanoparticles. Trends Biotechnol 27(8):468–476

    Article  CAS  Google Scholar 

  • Epifani M, Arbiol J, Andreu T, Morante JR (2010) Crystallization pathways of multicomponent oxide nanocrystals: critical role of the metal cations distribution in the case study of metal ferrites. Cryst Growth Des 10:5176–5181

    Article  CAS  Google Scholar 

  • Giri AK, Kirkpatrick EM, Moongkhamklang P, Majetich SA, Harris VG (2002) Photomagnetism and structure in cobalt ferrite nanoparticles. Appl Phys Lett 80:2341–2343

    Article  CAS  Google Scholar 

  • Giri J, Pradhan P et al (2008) Synthesis and characterizations of water-based ferrofluids of substituted ferrites [Fe1−xBxFe2O4, B = Mn, Co (x = 0–1)] for biomedical applications. J Magn Magn Mater 320(5):724–730

    Article  CAS  Google Scholar 

  • Guardia P, Pérez N, Labarta A, Batlle X (2010a) Controlled synthesis of iron oxide nanoparticles over a wide size range. Langmuir 26(8):5843–5847

    Article  CAS  Google Scholar 

  • Guardia P, Perez-Juste J, Labarta A, Batlle X, Liz-Marzán LM (2010b) Heating rate influence on the synthesis of iron oxide nanoparticles: the case of decanoic acid. Chem Commun 46(33):6108–6110

    Article  CAS  Google Scholar 

  • Gutiérrez J, Llordés A et al (2007) Strong isotropic flux pinning in solution-derived YBa2Cu3O7−x nanocomposite superconductor films. Nat Mat 6:367–373

    Article  Google Scholar 

  • Hu CQ, Gao ZH, Yang X (2008) One-pot low temperature synthesis of MFe2O4 (M = Co, Ni, Zn) superparamagnetic nanocrystals. J Magn Magn Mater 320(8):L70–L73

    Article  CAS  Google Scholar 

  • Kahn ML, Glaria A, Pages C, Monge M, Macary LS, Maisonnat A, Chaudret B (2009) Organometallic chemistry: an alternative approach towards metal oxide nanoparticles. J Mater Chem 19(24):4044–4060

    Article  CAS  Google Scholar 

  • Koh I, Josephson L (2009) Magnetic nanoparticle sensors. Sensors 9(10):8130–8145

    Article  CAS  Google Scholar 

  • Komarneni S, D’Arrigo MC, Leonelli C, Pellacani GC, Katsuki H (1998) Microwave-hydrothermal synthesis of nanophase ferrite. J Am Ceram Soc 81(11):3041–3043

    Article  CAS  Google Scholar 

  • Kwon SG, Piao Y et al (2007) Kinetics of monodisperse iron oxide nanocrystal formation by “heating-up” process. J Am Chem Soc 129(41):12571–12584

    Article  CAS  Google Scholar 

  • LaMer VK, Dinegar RD (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72(11):4847–4854

    Article  CAS  Google Scholar 

  • Li S, Liu L, John VT, O’Connor CJ, Harris VG (2001) Cobalt-ferrite nanoparticles: correlations between synthesis procedures, structural characteristics and magnetic properties. IEEE Trans Mag 37(4):2350–2352

    Article  CAS  Google Scholar 

  • Li FS, Wang L, Wang JB, Zhou QG, Zhou XZ, Kunkel HP, Williams G (2003) Site preference of Fe in nanoparticles of ZnFe2O4. J Magn Magn Mater 268:332–339

    Article  Google Scholar 

  • Li Y, Wu J, Qi D, Xu X, Deng C, Yang P, Zhang X (2008) Novel approach for the synthesis of Fe3O4@TiO2 core-shell microspheres and their application to the highly specific capture of phosphopeptides for MALDI-TOF MS analysis. Chem Comm 5:564–566

    Article  Google Scholar 

  • Llordés A, Palau A et al (2012) Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors. Nat Mat (advanced online publication)

  • Lue J-T (2001) A review of characterization and physical property studies of metallic nanoparticles. J Phys Chem Solids 62:1599–1612

    Article  CAS  Google Scholar 

  • Martínez B, Obradors X, Balcells Ll, Rouanet A, Monty C (1997) Low temperature surface spin-glass transition in γ-Fe2O3 nanoparticles. Phys Rev Lett 80(1):11–184

    Google Scholar 

  • Martínez-Julián F, Ricart S, Pomar A, Coll M, Abellán P, Sandiumenge F, Casanove MJ, Obradors X, Puig T, Pastoriza-Santos I, Liz-Marzán LM (2011) Chemical solution approaches to YBa2Cu3O7-δ-Au nanocomposite superconducting thin films. J Nanosci Nanotechnol 11(4):3245–3255

    Article  Google Scholar 

  • Mathew DS, Juang RS (2007) An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J 129(1–3):51–65

    Article  CAS  Google Scholar 

  • Moreno C, Abellan P, Sandiumenge F, Casanove M-J, Obradors X (2012) Nanocomposite lanthanum strontium manganite thin films formed by using a chemical solution deposition. Appl Phys Lett 100(2):023103–023103-3

    Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181

    Article  CAS  Google Scholar 

  • Park BK, Jeong S, Kim D, Moon J, Lim S, Kim JS (2007) Synthesis and size control of monodisperse copper nanoparticles by polyol method. J Colloid Interface Sci 311(2):417–424

    Article  CAS  Google Scholar 

  • Rigato F, Geshev J, Skumryev V, Foncuberta J (2009) The magnetization of epitaxial nanometric CoFe2O4 (001) layers. J Appl Phys 106(11):113924–113924-7

    Google Scholar 

  • Sertkol M, Koseoglu Y et al (2009) Synthesis and magnetic characterization of Zn0.6Ni0.4Fe2O4 nanoparticles via a polyethylene glycol-assisted hydrothermal route. J Magn Magn Mater 321(3):157–162

    Article  CAS  Google Scholar 

  • Singh S, Yadav BC, Prakash R, Bajaj B, Lee JR (2011) Synthesis of nanorods and mixed shaped copper ferrite and their applications as liquefield petroleum gas sensor. Appl Surf Sci 257:10763–10770

    Article  CAS  Google Scholar 

  • Skomski R (2003) Nanomagnetics. J Phys Condens Matter 15:R841–R896

    Article  CAS  Google Scholar 

  • Song O, Zhang ZJ (2004) Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J Am Chem Soc 126(19):6164–6168

    Article  CAS  Google Scholar 

  • Sun SH, Zeng H et al (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126(1):273–279

    Article  CAS  Google Scholar 

  • Tasca JE, Ponzinibbio A, Diaz G, Bravo RD, Lavat A, Gonzalez MG (2010) CuFe2O4 nanoparticles: a magnetically recoverable catalyst for selective deacetylation of carbohydrate derivatives. Top Catal 53:1087–1090

    Article  CAS  Google Scholar 

  • Thapa D, Kullkarni N, Mishra SN, Paulose PL, Ayyub P (2010) Enhanced magnetization in cubic ferrimagnetic CuFe2O4 nanoparticles synthesized from a citrate precursor: the role of Fe2+. J Phys D Appl Phys 43:195004–195008

    Article  Google Scholar 

  • Tsuji M, Hashimoto M, Nishizawa Y, Kubokawa M, Tsuji T (2004) Microwave-assisted synthesis of metallic nanostructures in solution. Chem Eur J 11:440–452

    Article  Google Scholar 

  • Turgeon JC, LaMer VK (1952) The kinetics of the formation of the carbinol of crystal violet. J Am Chem Soc 74(23):5988–5995

    Article  CAS  Google Scholar 

  • Uskokovic V, Drofenik M (2007) Reverse micelles: Inert nano-reactors or physico-chemically active guides of the capped reactions. Adv Colloid Interface Sci 133:23–34

    Article  CAS  Google Scholar 

  • Vilardell M, Granados X et al (2011) Ink jet printing for functional ceramics coatings. J Imaging Sci Technol 55:040304

    Article  Google Scholar 

  • Willard MA, Kurihara LK, Carpenter EE, Calvin S, Harris VG (2004) Chemically prepared magnetic nanoparticles. Int Mater Rev 49:125–170

    Article  CAS  Google Scholar 

  • Xie S, Cheng J, Wessels BW, Dravid VP (2008) Interfacial structure and chemistry of epitaxial CoFe2O4 thin films on SrTiO3 and MgO substrates. Appl Phys Lett 93:181901

    Article  Google Scholar 

  • Yanez-Vilar S, Sanchez-Andujar M et al (2009) A simple solvothermal synthesis of MFe2O4 (M = Mn, Co and Ni) nanoparticles. J Solid State Chem 182(10):2685–2690

    Article  CAS  Google Scholar 

  • Yang A, Chinnasamy CN, Greneche JM, Chen Y, Yoon SD, Hsu K, Vittoria C, Harris VG (2009a) Large tunability of Néel temperature by growth-rate-induced cation inversion in Mn-ferrite nanoparticles. Appl Phys Lett 94:113109

    Article  Google Scholar 

  • Yang H, Yan J, Lu Z, Cheng X, Tang Y (2009b) Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation. J Alloys Compd 476:715–719

    Article  CAS  Google Scholar 

  • Zeng H, Rice PM, Wang SX, Sun S (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126:11458–11459

    Article  CAS  Google Scholar 

  • Zhang H, Zhai C et al (2008) Cobalt ferrite nanorings: Ostwald ripening dictated synthesis and magnetic properties. Chem Commun 43:5648–5650

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ministerio de Ciencia e Innovación (MICINN) (MAT2008-01022), Consolider NANOSELECT (CSD2007-00041), Generalitat de Catalunya (2009 SGR 770 and Xarmae) and European Union (EFECTS and NESPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susagna Ricart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solano, E., Perez-Mirabet, L., Martinez-Julian, F. et al. Facile and efficient one-pot solvothermal and microwave-assisted synthesis of stable colloidal solutions of MFe2O4 spinel magnetic nanoparticles. J Nanopart Res 14, 1034 (2012). https://doi.org/10.1007/s11051-012-1034-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1034-y

Keywords

Navigation