Skip to main content

Advertisement

Log in

SnO2, IrO2, Ta2O5, Bi2O3, and TiO2 nanoparticle anodes: electrochemical oxidation coupled with the cathodic reduction of water to yield molecular H2

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In recent years, the search for environmentally friendly alternative energy sources with reduced carbon footprints has increased. The coupling of photovoltaic power sources with advanced electrolysis systems for hydrogen production via water splitting using organic contaminants as sacrificial electron donors has been considered to a be viable alternative. In this report, we demonstrated the feasibility of a scaled-up rooftop prototype of the proposed hybrid photovoltaic-electrolysis system, which utilizes semiconductor nanoparticles coated on to metal substrates as electrodes for the generation of hydrogen coupled with the oxidation of wastewater. Application of an anodic bias of >2.0 V to bismuth-doped TiO2 (BiO x –TiO2) on Ti metal anodes with a sequential under-coatings of nanoparticulate SnO2, IrO2, Ta2O5, and Bi2O3 results in the electrochemical degradation of a variety of organic chemical contaminants in water (i.e., rhodamine B (Rh.B), methylene blue (MB), salicylic acid, triclosan, and phenol) and actual wastewater from a chemical manufacturing plant, while at the same time, molecular hydrogen is produced at stainless steel (SS) cathodes. The kinetics of the anodic substrates oxidation is investigated as a function of the cell current (I cell), substrate concentration, and background electrolyte composition (e.g., NaCl, Na2SO4, or seawater). Average current efficiencies were found to be in the range of 4–22 %, while the cathodic current and energy efficiencies for hydrogen production were found to be in the range of 50–70 % and 20–40 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad GE, El Shenawy ET (2006) Optimized photovoltiac system for hydrogen production. Renew Energ 31:1043–1054

    Article  CAS  Google Scholar 

  • Anglada A, Urtiaga A, et al (2009) Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications. J Chem Technol Biotechnol. doi:10.1002/jctb.2214

  • Bonfatti F, Ferro S et al (2000) Electrochemical incineration of glucose as a model organic substrate—II. Role of active chlorine mediation. J Electrochem Soc 147:592–596

    Article  CAS  Google Scholar 

  • Cabeza A, Urtiaga AM et al (2007) Electrochemical treatment of landfill leachates using a boron-doped diamond anode. Ind Eng Chem Res 46:1439–1446

    Article  CAS  Google Scholar 

  • Chen GH (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38:11–41

    Article  Google Scholar 

  • Comninellis C, Nerini A (1995) Anodic-oxidation of phenol in the presence of NaCl for waste-water treatment. J Appl Electrochem 25:23–28

    Article  CAS  Google Scholar 

  • Comninellis C, Pulgarin C (1991) Anodic-oxidation of phenol for waste-water treatment. J Appl Electrochem 21:703–708

    Article  CAS  Google Scholar 

  • DOE (2008) International energy outlook 2006; DOE/EIA = 0484(2008). Energy Information Administration

  • Gibson TL, Kelly NA (2008) Optimization of solar powered hydrogen production using photovoltaic electrolysis devices. Int J Hydrogen Energy 33:5931–5940

    Article  CAS  Google Scholar 

  • Hollmuller P, Joubert JM et al (2000) Evaluation of a 5 kW(P) photovoltaic hydrogen production and storage installation for a residential home in Switzerland. Int J Hydrogen Energy 25:97–109

    Article  CAS  Google Scholar 

  • Iniesta J, Michaud PA et al (2001) Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochim Acta 46:3573–3578

    Article  CAS  Google Scholar 

  • Jiang JY, Chang M et al (2008) Simultaneous hydrogen production and electrochemical oxidation of organics using boron-doped diamond electrodes. Environ Sci Technol 42:3059–3063

    Article  CAS  Google Scholar 

  • Juttner K, Galla U et al (2000) Electrochemical approaches to environmental problems in the process industry. Electrochim Acta 45:2575–2594

    Article  CAS  Google Scholar 

  • Kraft A (2007) Doped diamond: a compact review on a new, versatile electrode material. Int J Electrochem Sci 2:355–385

    CAS  Google Scholar 

  • Lehman PA, Chamberlin CE et al (1997) Operating experience with a photovoltaic-hydrogen energy system. Int J Hydrogen Energy 22:465–470

    Article  CAS  Google Scholar 

  • Montanaro D, Petrucci E (2009) Electrochemical treatment of Remazol Brilliant Blue on a boron-doped diamond electrode. Chem Eng J 153:138–144

    Article  CAS  Google Scholar 

  • Montanaro D, Petrucci E et al (2008) Anodic, cathodic and combined treatments for the electrochemical oxidation of an effluent from the flame retardant industry. J Appl Electrochem 38:947–954

    Article  CAS  Google Scholar 

  • Murugananthan M, Yoshihara S et al (2007) Electrochemical degradation of 17 beta-estradiol (E2) at boron-doped diamond (Si/BDD) thin film electrode. Electrochim Acta 52:3242–3249

    Article  CAS  Google Scholar 

  • Panizza M, Barbucci A et al (2007) Electrochemical degradation of methylene blue. Sep Purif Technol 54:382–387

    Article  CAS  Google Scholar 

  • Park H, Vecitis CD et al (2008a) Solar-powered production of molecular hydrogen from water. J Phys Chem C 112:885–889

    Article  CAS  Google Scholar 

  • Park H, Vecitis CD et al (2008b) Solar-powered electrochemical oxidation of organic compounds coupled with the cathodic production of molecular hydrogen. J Phys Chem A 112:7616–7626

    Article  CAS  Google Scholar 

  • Park H, Vecitis CD et al (2009) Electrochemical water splitting coupled with organic compound oxidation: the role of active chlorine species. J Phys Chem C 113:7935–7945

    Article  CAS  Google Scholar 

  • Petrucci E, Montanaro D (2011) Anodic oxidation of a simulated effluent containing Reactive Blue 19 on a boron-doped diamond electrode. Chem Eng J 174:612–618

    Article  CAS  Google Scholar 

  • Shen ZM, Yang J et al (2005) Dual electrodes oxidation of dye wastewater with gas diffusion cathode. Environ Sci Technol 39:1819–1826

    Article  CAS  Google Scholar 

  • Srinivasan S (2006) Fuel cells: from fundamentals to applications. Springer, New York

    Google Scholar 

  • Urtiaga A, Rueda A et al (2009) Integrated treatment of landfill leachates including electrooxidation at pilot plant scale. J Hazard Mater 166:1530–1534

    Article  CAS  Google Scholar 

  • Vaghela SS, Jethva AD et al (2005) Laboratory studies of electrochemical treatment of industrial azo dye effluent. Environ Sci Technol 39:2848–2855

    Article  CAS  Google Scholar 

  • Vlyssides AG, Karlis PK et al (2002) Electrochemical treatment in relation to pH of domestic wastewater using Ti/Pt electrodes. J Hazard Mater 95:215–226

    Article  CAS  Google Scholar 

  • Weres O (2009) Electrode with surface comprising oxides of titanium and bismuth and water purification process using this electrode, US 7494583 B2

Download references

Acknowledgments

We are grateful to the Bill and Melinda Gates Foundation for support of our solar toilet project under the Reinventing the Toilet Project, Grant: OPP1037491 “Development of a Self-Contained, PV-Powered Domestic Toilet and Wastewater Treatment System.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Hoffmann.

Additional information

Special Issue Editors: Mamadou Diallo, Neil Fromer, Myung S. Jhon

This article is part of the Topical Collection on Nanotechnology for Sustainable Development

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, J., Qu, Y. & Hoffmann, M.R. SnO2, IrO2, Ta2O5, Bi2O3, and TiO2 nanoparticle anodes: electrochemical oxidation coupled with the cathodic reduction of water to yield molecular H2 . J Nanopart Res 14, 983 (2012). https://doi.org/10.1007/s11051-012-0983-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0983-5

Keywords

Navigation