Skip to main content
Log in

Limitations and information needs for engineered nanomaterial-specific exposure estimation and scenarios: recommendations for improved reporting practices

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The aim of this paper is to describe the process and challenges in building exposure scenarios for engineered nanomaterials (ENM), using an exposure scenario format similar to that used for the European Chemicals regulation (REACH). Over 60 exposure scenarios were developed based on information from publicly available sources (literature, books, and reports), publicly available exposure estimation models, occupational sampling campaign data from partnering institutions, and industrial partners regarding their own facilities. The primary focus was on carbon-based nanomaterials, nano-silver (nano-Ag) and nano-titanium dioxide (nano-TiO2), and included occupational and consumer uses of these materials with consideration of the associated environmental release. The process of building exposure scenarios illustrated the availability and limitations of existing information and exposure assessment tools for characterizing exposure to ENM, particularly as it relates to risk assessment. This article describes the gaps in the information reviewed, recommends future areas of ENM exposure research, and proposes types of information that should, at a minimum, be included when reporting the results of such research, so that the information is useful in a wider context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Auffan M, Pedeutour M, Rose J, Masion A, Ziarelli F, Borschneck D, Chaneac C, Botta C, Chaurand P, Labille J, Bottero JY (2010) Structural degradation at the surface of a TiO2-based nanomaterial used in cosmetics. Environ Sci Technol 44:2689–2694

    Article  CAS  Google Scholar 

  • Balbus JM, Maynard AD, Colvin VL, Castranova V, Daston GP, Denison RA, Dreher KL, Goering PL, Goldberg AM, Kulinowski KM, Monteiro-Riviere NA, Oberdorster G, Omenn GS, Pinkerton KE, Ramos KS, Rest KM, Sass JB, Silbergeld EK, Wong BA (2007) Meeting report: hazard assessment for nanoparticles—report from an interdisciplinary workshop. Environ Health Perspect 115:1654–1659

    Article  Google Scholar 

  • Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdorster E (2006) The potential risks of nanomaterials: a review carried out for ecetoc. Part Fibre Toxicol 3:11

    Article  Google Scholar 

  • Bouwmeester H, Lynch I, Marvin HJ, Dawson KA, Berges M, Braguer D, Byrne HJ, Casey A, Chambers G, Clift MJ, Elia G, Fernandes TF, Fjellsbo LB, Hatto P, Juillerat L, Klein C, Kreyling WG, Nickel C, Riediker M, Stone V (2011) Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices. Nanotoxicology 5:1–11

    Article  CAS  Google Scholar 

  • Boxall ABA, Chaudhry Q, Jones A, Jefferson B, Watts CD (2008) Current and future predicted environmental exposure to engineered nanoparticles. Central Science Laboratory, Sand Hutton, UK

    Google Scholar 

  • Brouwer D (2010) Exposure to manufactured nanoparticles in different workplaces. Toxicology 269:120–127

    Article  CAS  Google Scholar 

  • Brouwer DH, Semple S, Marquart J, Cherrie JW (2001) A dermal model for spray painters. Part i: subjective exposure modelling of spray paint deposition. Ann Occup Hyg 45:15–23

    CAS  Google Scholar 

  • Brouwer DH, Berges M, Virji MA, Fransman W, Bello D, Hodson L, Gabriel S, Tielemans E (2012) Harmonization of measurement strategies for exposure to manufactured nano-objects: Report of a workshop. Annal Occup Hyg 56(1):1–9. doi:10.1093/annhyg/mer099

    Article  Google Scholar 

  • Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ (2004) Nanotoxicology. Occup Environ Med 61:727–728

    Article  CAS  Google Scholar 

  • ECETOC (2011) Targeted risk assessment (tra) tools. http://www.ecetoc.org/tra. Accessed 25 May 2011

  • ECHA (2008) Guidance on information requirements and chemical safety assessment. Part d: exposure scenario building (Version 1.1). European Chemicals Agency (ECHA). Helsinki, Finland

  • Fransman W, Cherrie J, van Tongeren M, Schneider T, Tischer M, Schinkel J, Marquart H, Warren N, Kromhout H, Tielemans E (2009) Development of a mechanistic model for the advanced reach tool (art). TNO Quality of Life, Zeist, The Netherlands

    Google Scholar 

  • Geranio L, Heuberger M, Nowack B (2009) The behavior of silver nanotextiles during washing. Environ Sci Technol 43:8113–8118

    Article  CAS  Google Scholar 

  • Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2010) Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environ Toxicol Chem 29:1036–1048

    CAS  Google Scholar 

  • ICON (2008) Towards predicting nano-biointeractions: an international assessment of nanotechnology environment, health and safety research needs. International Council on Nanotechnology; Rice University, Houston, TX

    Google Scholar 

  • Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M, Boller M (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156:233–239

    Article  CAS  Google Scholar 

  • Köhler A, Som C, Helland A, Gottschalk F (2008) Studying the potential release of carbon nanotubes throughout the application life cycle. J Cleaner Prod 16:927–937

    Article  Google Scholar 

  • Koponen IK, Jensen KA, Schneider T (2011) Comparison of dust released from sanding conventional and nanoparticle-doped wall and wood coatings. J Expo Sci Environ Epidemiol 21:408–415

    Article  CAS  Google Scholar 

  • Linkov I, Satterstrom FK, Monica JCJ, Hansen SF, Davis TA (2009) Nano risk governance: current developments and future perspectives. Nanotechnol Law Bus 202:203–220

    Google Scholar 

  • Marquart H, Heussen H, Le Feber M, Noy D, Tielemans E, Schinkel J, West J, Van Der Schaaf D (2008) ‘Stoffenmanager’, a web-based control banding tool using an exposure process model. Ann Occup Hyg 52:429–441

    Article  Google Scholar 

  • Maynard AD, Warheit DB, Philbert MA (2011) The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol Sci 120(Suppl 1):S109–S129

    Article  CAS  Google Scholar 

  • Methner MM, Birch ME, Evans DE, Ku BK, Crouch K, Hoover MD (2007) Identification and characterization of potential sources of worker exposure to carbon nanofibers during polymer composite laboratory operations. J Occup Environ Hyg 4:D125–D130

    Article  Google Scholar 

  • Methner M, Hodson L, Geraci C (2010) Nanoparticle emission assessment technique (neat) for the identification and measurement of potential inhalation exposure to engineered nanomaterials–part a. J Occup Environ Hyg 7:127–132

    Article  CAS  Google Scholar 

  • Nieuwenhuijsen M (ed) (2003) Exposure assessment in occupational and environmental epidemiology. Oxford University Press, Oxford

    Google Scholar 

  • Nyland JF, Silbergeld EK (2009) A nanobiological approach to nanotoxicology. Hum Exp Toxicol 28:393–400

    Article  CAS  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  CAS  Google Scholar 

  • Royal Society (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. Science Policy Section, The Royal Society and the Royal Academy of Engineering, London

    Google Scholar 

  • Savolainen K, Alenius H, Norppa H, Pylkkanen L, Tuomi T, Kasper G (2010) Risk assessment of engineered nanomaterials and nanotechnologies–a review. Toxicology 269:92–104

    Article  CAS  Google Scholar 

  • Schneider T, Brouwer DH, Koponen IK, Jensen KA, Fransman W, Van Duuren-Stuurman B, Van Tongeren M, Tielemans E (2011) Conceptual model for assessment of inhalation exposure to manufactured nanoparticles. J Expo Sci Environ Epidemiol 21:450–463

    Article  CAS  Google Scholar 

  • Seipenbusch M, Binder A, Kasper G (2008) Temporal evolution of nanoparticle aerosols in workplace exposure. Ann Occ Hyg 52:707–716

    Article  CAS  Google Scholar 

  • Szymczak W, Menzel N, Keck L (2007) Emissions of ultrafine copper particles by universal motrols controlled by phase angle modulation. J Aerosol Sci 38:520–531

    Article  CAS  Google Scholar 

  • US EPA (2009) Integrated science assessment for particulate matter. National Center for Environmental Assessment—RTP Division; Office of Research and Development; United States Environmental Protection Agency. Research Triangle Park, NC: EPA/600/R-608/139F

  • van Hemmen JJ, Auffarth J, Evans PG, Rajan-Sithamparanadarajah B, Marquart H, Oppl R (2003) Riskofderm: risk assessment of occupational dermal exposure to chemicals. An introduction to a series of papers on the development of a toolkit. Ann Occup Hyg 47:595–598

    Article  Google Scholar 

  • van Tongeren M (2011) Project final report: development of exposure scenarios for nanomaterials (NANEX). FP7 project number 247794. www.nanex-project.eu. Accessed 7 Sep 2011

  • van Veen M (1995) Consexpo a program to estimate consumer product exposure and uptake. RIVM. Bilthoven, the Netherlands

    Google Scholar 

  • von der Kammer F, Legros S, Larsen E, Loescher K, Hofmann T (2011) Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. Trends Anal Chem 30:425–436

    Article  Google Scholar 

  • Zartarian V, Bahadori T, McKone T (2005) Adoption of an official ISEA glossary. J Expo Sci Environ Epidemiol 15:1–5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the European Commission’s 7th Framework Programme Coordination and Support Action “NANEX—Development of Exposure Scenarios for Manufactured Nanomaterials” (Grant NMP-CSA-247794). We thank the Dr. Steffi Friedrichs, the Nanotechnology Industries Association (NIA), and its members for their generous cooperation and assistance with the case studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Riediker.

Additional information

Special Issue Editors: Candace S.-J. Tsai, Michael J. Ellenbecker

This article is part of the Topical Collection on Nanotechnology, Occupational and Environmental Health

The opinions expressed in this paper are those of the authors Frans M. Christensen and Christian Micheletti and not necessarily those of the European Commission.

Kaspar Schmid is currently affiliated with the Swiss Secretariat for Economic Affairs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 222 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, K., van Tongeren, M., Christensen, F.M. et al. Limitations and information needs for engineered nanomaterial-specific exposure estimation and scenarios: recommendations for improved reporting practices. J Nanopart Res 14, 970 (2012). https://doi.org/10.1007/s11051-012-0970-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0970-x

Keywords

Navigation