Skip to main content
Log in

Regulation of catalytic behaviour of hydrolases through interactions with functionalized carbon-based nanomaterials

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The interaction of enzymes with carbon-based nanomaterials (CBNs) is crucial for the function of biomolecules and therefore for the design and development of effective nanobiocatalytic systems. In this study, the effect of functionalized CBNs, such as graphene oxide (GO) and multi-wall carbon nanotubes (CNTs), on the catalytic behaviour of various hydrolases of biotechnological interest was monitored and the interactions between CBNs and proteins were investigated. The enzyme–nanomaterial interactions significantly affect the catalytic behaviour of enzymes, resulting in an increase up to 60 % of the catalytic efficiency of lipases and a decrease up to 30 % of the esterase. Moreover, the use of CNTs and GO derivatives, especially those that are amine-functionalized, led to increased thermal stability of most the hydrolases tested. Fluorescence and circular dichroism studies indicated that the altered catalytic behaviour of enzymes in the presence of CBNs arises from specific enzyme–nanomaterial interactions, which can lead to significant conformational changes. In the case of lipases, the conformational changes led to a more active and rigid structure, while in the case of esterases this led to destabilization and unfolding. Kinetic and spectroscopic studies indicated that the extent of the interactions between CBNs and hydrolases can be mainly controlled by the functionalization of nanomaterials than by their geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Bs2:

Bacillus subtilis esterase

CalA:

Pseudozyma (Candida) antarctica lipase A

CalB:

Pseudozyma (Candida) antarctica lipase B

CBNs:

Carbon-based nanomaterials

CNT-COOH:

Oxidized carbon nanotubes

CNT-NH:

Amine-functionalized carbon nanotubes

CNTs:

Carbon nanotubes

Crl:

Candida rugosa lipase

GO:

Graphene oxide

GO-NH:

Amine-functionalized graphene oxide

PfeI:

Pseudomonas fluorescens esterase I

pNPB:

p-Nitrophenyl butyrate

References

  • Andrade MA, Chacon P, Merelo JJ, Moran F (1993) Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Eng 6:383–390

    Article  CAS  Google Scholar 

  • Asuri P, Bale SS, Pangule RC, Shah DA, Kane RS, Dordick JS (2007) Structure, function, and stability of enzymes covalently attached to single-walled carbon nanotubes. Langmuir 23:12318–12321

    Article  CAS  Google Scholar 

  • Bornscheuer UT (2002) Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 26:73–81

    Article  CAS  Google Scholar 

  • Bornscheuer UT (2003) Immobilizing enzymes: how to create more suitable biocatalysts. Angew Chem Int Ed 42:3336–3337

    Article  CAS  Google Scholar 

  • Bourlinos AB, Gournis D, Petridis D, Szabó T, Szeri A, Dékány I (2003) Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19:6050–6055

    Article  CAS  Google Scholar 

  • Cang-Rong JT, Pastorin G (2009) The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies. Nanotechnology 20:255102

    Article  Google Scholar 

  • Deleage G, Geourjon C (1993) An interactive graphic program for calculating the secondary structure content of proteins from circular dichroism spectrum. Comput Appl Biosci 9:197–199

    CAS  Google Scholar 

  • Eftink MR, Ghiron CA (1981) Fluorescence quenching studies with proteins. Anal Biochem 114:199–227

    Article  CAS  Google Scholar 

  • Feller G, Arpigny JL, Narinx E, Gerday C (1997) Molecular adaptations of enzymes from psychrophilic organisms. Comp Biochem Physiol A Physiol 118:495–499

    Article  Google Scholar 

  • Foldvari M, Bagonluri M (2008) Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomed Nanotechnol Biol Med 4:183–200

    Article  CAS  Google Scholar 

  • Gao Y, Kyratzis I (2008) Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide—a critical assessment. Bioconjug Chem 19:1945–1950

    Article  CAS  Google Scholar 

  • Henke E, Pleiss J, Bornscheuer UT (2002) Activity of lipases and esterases towards tertiary alcohols: insights into structure–function relationships. Angew Chem Int Ed 41:3211–3213

    Article  CAS  Google Scholar 

  • In Het Panhuis M, Salvador-Morales C, Franklin E, Chambers G, Fonseca A, Nagy JB, Blau WJ, Minett AI (2003) Characterization of an interaction between functionalized carbon nanotubes and an enzyme. J Nanosci Nanotechnol 3:209–213

    Article  Google Scholar 

  • Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397

    Article  CAS  Google Scholar 

  • Jiang Y, Guo C, Xia H, Mahmood I, Liu C, Liu H (2009) Magnetic nanoparticles supported ionic liquids for lipase immobilization: enzyme activity in catalyzing esterification. J Mol Catal B Enzyme 58:103–109

    Article  CAS  Google Scholar 

  • Kim SS, Fisher TS, Huang TT, Ladisch MR (2005) Effects of carbon nanotube structure on protein adsorption. Adv Bioeng 57:37–42

    Article  CAS  Google Scholar 

  • Kim J, Grate JW, Wang P (2008) Nanobiocatalysis and its potential applications. Trends Biotechnol 26:639–646

    Article  CAS  Google Scholar 

  • Krebsfänger N, Zocher F, Altenbuchner J, Bornscheuer UT (1998) Characterization and enantioselectivity of a recombinant esterase from Pseudomonas fluorescens. Enzyme Microb Technol 22:641–646

    Article  Google Scholar 

  • Kuchibhatla SVNT, Karakoti AS, Bera D, Seal S (2007) One dimensional nanostructured materials. Prog Mater Sci 52:699–913

    Article  CAS  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Mi L, Zhang X, Yang W, Wang L, Huang Q, Fan C, Hu J (2009) Artificial nano-bio-complexes: effects of nanomaterials on biomolecular reactions and applications in biosensing and detection. J Nanosci Nanotechnol 9:2247–2255

    Article  CAS  Google Scholar 

  • Monsellier E, Bedouelle H (2005) Quantitative measurement of protein stability from unfolding equilibria monitored with the fluorescence maximum wavelength. Protein Eng Des Sel 18:445–456

    Article  CAS  Google Scholar 

  • Mu Q, Liu W, Xing Y, Zhou H, Li Z, Zhang Y, Ji L, Wang F, Si Z, Zhang B, Yan B (2008) Protein binding by functionalized multiwalled carbon nanotubes is governed by the surface chemistry of both parties and the nanotube diameter. J Phys Chem C 112:3300–3307

    Article  CAS  Google Scholar 

  • Pavlidis IV, Gournis D, Papadopoulos GK, Stamatis H (2009) Lipases in water-in-ionic liquid microemulsions: structural and activity studies. J Mol Catal B Enzyme 60:50–56

    Article  CAS  Google Scholar 

  • Pavlidis IV, Tsoufis T, Enotiadis A, Gournis D, Stamatis H (2010a) Functionalized multi-wall carbon nanotubes for lipase immobilization. Adv Eng Mater 12:B179–B183

    Article  Google Scholar 

  • Pavlidis IV, Tzafestas K, Stamatis H (2010b) Water-in-ionic liquid microemulsion-based organogels as novel matrices for enzyme immobilization. Biotechnol J 5:805–812

    Article  CAS  Google Scholar 

  • Ramoni R, Staiano M, Bellucci S, Grycznyski I, Grycznyski Z, Crescenzo R, Iozzino L, Bharill S, Conti V, Grolli S, D’Auria S (2008) Carbon nanotube-based biosensors. J Phys Condens Matter 20:474201

    Article  Google Scholar 

  • Shah S, Solanki K, Gupta MN (2007) Enhancement of lipase activity in non-aqueous media upon immobilization on multi-walled carbon nanotubes. Chem Cent J 1:30

    Article  Google Scholar 

  • Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307

    Article  CAS  Google Scholar 

  • Shi Q, Yang D, Su Y, Li J, Jiang Z, Jiang Y, Yuan W (2007) Covalent functionalization of multi-walled carbon nanotubes by lipase. J Nanopart Res 9:1205–1210

    Article  CAS  Google Scholar 

  • Stern O, Volmer M (1919) Über die Abklingzeit der Fluoreszenz. Phys Z 20:183–188

    CAS  Google Scholar 

  • Stolarczyk K, Nazaruk E, Rogalski J, Bilewicz R (2008) Nanostructured carbon electrodes for laccase-catalyzed oxygen reduction without added mediators. Electrochim Acta 53:3983–3990

    Article  CAS  Google Scholar 

  • Tzialla AA, Pavlidis IV, Felicissimo MP, Rudolf P, Gournis D, Stamatis H (2010) Lipase immobilization on smectite nanoclays: characterization and application to the epoxidation of α-pinene. Bioresour Technol 101:1587–1594

    Article  CAS  Google Scholar 

  • Verger R (1997) ‘Interfacial activation’ of lipases: facts and artifacts. Trends Biotechnol 15:32–38

    Article  CAS  Google Scholar 

  • Vijayaraj M, Gadiou R, Anselme K, Ghimbeu C, Vix-Guterl C, Orikasa H, Kyotani T, Ittisanronnachai S (2010) The influence of surface chemistry and pore size on the adsorption of proteins on nanostructured carbon materials. Adv Funct Mater 20:2489–2499

    Article  CAS  Google Scholar 

  • Wu Y, Wang Y, Luo G, Dai Y (2009) In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution. Bioresour Technol 100:3459–3464

    Article  CAS  Google Scholar 

  • Zhang J, Zhang F, Yang H, Huang X, Liu H, Guo S (2010) Graphene oxide as a matrix for enzyme immobilization. Langmuir 26:6083–6085

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Part of this study was supported from the Program IKYDA 2010 for the Promotion of the Exchange and Scientific Cooperation between Greece and Germany (IKY, Athens, Greece and DAAD, Bonn, Germany). We are grateful to A.S. Politou from the Laboratory of Biological Chemistry, Medical School, University of Ioannina, for the use of CD facilities. I.V.P. is very thankful to the Bodossakis Foundation for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haralambos Stamatis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 573 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlidis, I.V., Vorhaben, T., Gournis, D. et al. Regulation of catalytic behaviour of hydrolases through interactions with functionalized carbon-based nanomaterials. J Nanopart Res 14, 842 (2012). https://doi.org/10.1007/s11051-012-0842-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0842-4

Keywords

Navigation