Skip to main content
Log in

Magnetism induced by capping of non-magnetic ZnO nanoparticles

  • Special Issue: Nanostructured Materials 2010
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Magnetism of 10 nm size capped nanoparticles, NPs, of non-magnetic ZnO is analysed in terms of the surface band since, as magnetic dichroism analysis has pointed out, impurity atoms bonded to the surface act as donor or acceptor of electrons that occupy the surface states. Due to the nanometric scale of the particles the kinetic energy spectrum of the surface states can be considered as discrete. Therefore, the magnetic polarisation cannot be easily induced by pumping electrons to energy levels above the Fermi energy. It is in the Fermi level itself, generally unfilled, that develops a spontaneous magnetic moment similarly to that induced by Hund rules in unfilled atomic orbitals. It is shown, however, that the total magnetic moment of the surface originated at the unfilled Fermi level can reach values as large as 102 or 103 Bohr magnetons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson AB, Nichols JA (1986) Relaxation in zinc oxide (1010), (0001), and (0001) surfaces and the adsorption of carbon monoxide. J Am Chem Soc 108:1385–1388

    Article  CAS  Google Scholar 

  • Botello-Méndez AR et al (2008) Enhanced ferromagnetism in ZnO nanoribbons and clusters passivated with sulfur. Nano Res 1:420–426

    Article  Google Scholar 

  • Chaboy J et al (2010) Evidence of intrinsic magnetism in capped ZnO nanoparticles. Phys Rev B 82:064411–064419

    Article  Google Scholar 

  • Crespo P et al (2004) Permanent magnetism, magnetic anisotropy, and hysteresis of thiol-capped gold nanoparticles. Phys Rev Lett 93(8):087204-4

    Article  Google Scholar 

  • Crespo P et al (2006) Fe impurities weaken the ferromagnetic behavior in Au nanoparticles. Phys Rev Lett 97:177203–177204

    Article  CAS  Google Scholar 

  • de la Venta J (2009) X-ray magnetic circular dichroism and small angle neutron scattering study of thiol capped gold nanoparticles. J Nanosci Nanotechnol 9:6434

    Article  Google Scholar 

  • García MA et al (2007) Magnetic properties of ZnO nanoparticles. NanoLetters 7:1489–1494

    Article  Google Scholar 

  • Garitaonanindía J et al (2008) Chemically induced permanent magnetism in Au, Ag, and Cu nanoparticles: localization of the magnetism by element selective techniques. Nanoletters 8(2):661–667

    Article  Google Scholar 

  • Haverkort MH et al (2008) Strong spin-orbit coupling effects on the fermi surface of Sr2RuO4 and Sr2RhO4. Phys Rev Lett 101:026406-4

    Article  Google Scholar 

  • Hernando A et al (1997) High-temperature large diamagnetism in ball-milled Sr0.6Ca0.4CuO2. Phys Rev B 56:7800–7803

    Article  CAS  Google Scholar 

  • Hernando A et al (2006) Origin of orbital ferromagnetism and giant magnetic anisotropy at the nanoscale. Phys Rev Lett 96:057206-4

    Google Scholar 

  • Hochstrasser M et al (2002) Spin-resolved photoemission of surface states of W(110)-(1×1)H. Phys Rev Lett 89:216802-4

    Article  Google Scholar 

  • Hoesch M et al (2004) Spin structure of the Shockley surface state on Au(111). Phys Rev B 69:241401-4R

    Article  Google Scholar 

  • Huang D, Gumbs G (1992) Single-particle energy eigenstates for electrons on a sphere in an axial magnetic field. Phys Lett A 167:396–400

    Article  Google Scholar 

  • Kittilstved KR, Norberg MS, Gamelin DR (2005) Chemical manipulation of high-TC ferromagnetism in ZnO diluted magnetic semiconductors. Phys Rev Lett 94:147209–147213

    Article  Google Scholar 

  • Lashell S et al (1996) Spin splitting of an Au(111) surface state band observed with angle resolved photoelectron spectroscopy. Phys Rev Lett 77(16):3419–3422

    Article  CAS  Google Scholar 

  • Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1224

    Article  CAS  Google Scholar 

  • Meier L et al (2007) Measurement of Rashba and Dresselhaus spin–orbit magnetic fields. Nat Phys 3:650

    Article  CAS  Google Scholar 

  • Rumpf K, Granitzer P, Krenn H (2008) Beyond spin-magnetism of magnetic nanowires in porous silicon. J Phys Condens Mater 20:454221

    Article  Google Scholar 

  • Sih V et al (2005) Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases. Nat Phys 1:31–35

    Article  CAS  Google Scholar 

  • Sundaresan A et al (2006) Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys Rev B 74:161306

    Article  Google Scholar 

  • Tempere J, Silvera IF, Devreese JT (2002) Many-body properties of a spherical two-dimensional electron gas. Phys Rev B 65:195418–195427

    Article  Google Scholar 

  • Venkatesan M, Fitgerald CB, Coey JMD (2004a) Thin films: unexpected magnetism in a dielectric oxide. Nature 430:630

    Article  CAS  Google Scholar 

  • Venkatesan M, Fitzgerald CB, Lunney JG, Coey JMD (2004b) Anisotropic ferromagnetism in substituted zinc oxide. Phys Rev Lett 93:177206–177210

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Spanish Government through projects MAT2009-14741-C02-01 and CSD2007-00010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hernando.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernando, A., García, M.A. Magnetism induced by capping of non-magnetic ZnO nanoparticles. J Nanopart Res 13, 5595–5602 (2011). https://doi.org/10.1007/s11051-011-0257-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0257-7

Keywords

Navigation