Skip to main content
Log in

Influence of NH3 flow rate on pyridine-like N content and NO electrocatalytic oxidation of N-doped multiwalled carbon nanotubes

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs) have been prepared by pyrolysis of pyridine and iron phthalocyanine over an iron catalyst at 850 °C at various ammonia gas (NH3) flow rates. X-ray photoelectron spectroscopy results reveal that the pyridine-like nitrogen (N) content can be controlled by changing the flow rate of NH3, and that pyridine-like N plays an important role: it can increase the electrocatalytic activity and the rate of nitric oxide (NO) electrooxidation and decrease the activation energy of NO electrooxidation. Cyclic voltammetry results demonstrate that the N-MWCNTs sample grown with 200 mL/min NH3 flow has the maximum N content of 3.22 atomic %, and its content of pyridine-like N that is chemically active is also the highest among all the N-MWCNTs samples. Electrochemical impedance spectroscopy results indicate that two-step electron transfer process occurs at the N-MWCNT-modified electrode, and the control step is different in various potential regions. The stability of NO electrooxidation at the N-MWCNT-modified electrode is examined, and the reaction mechanism is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

N-MWCNTs:

N-doped multiwalled carbon nanotubes

CNTs:

Carbon nanotubes

CV:

Cyclic voltammetry

EIS:

Electrochemical impedance spectroscopy

TEM:

Transmission electron microscopy

XPS:

X-ray photoelectron spectroscopy

GC:

Glass carbon

SWCNTs:

Single-walled carbon nanotubes

References

  • Amadou J, Chizari K, Houllé M, Janowska I, Ersen O, Bégin D, Pham-Huu C (2008) N-doped carbon nanotubes for liquid-phase C=C bond hydrogenation. Catal Today 138:62–68. doi:10.1016/j.cattod.2008.06.015

    Article  CAS  Google Scholar 

  • Ayala P, Gruneis A, Gemming T, Grimm D, Kramberger C, Rummeli MH, Freire FL Jr, Kuzmany H, Pfeiffer R, Barreiro A, Buchner B, Pichler T (2007) Tailoring N-doped single and double wall carbon nanotubes from a nondiluted carbon/nitrogen feedstock. J Phys Chem C 111:2879–2884. doi:10.1021/jp0658288

    Article  CAS  Google Scholar 

  • Bulusheva LG, Okotrub AV, Kudashov AG, Pazhetnov EM, Boronin AI, Vyalikh DV (2007) Encapsulation of molecular nitrogen in multiwall CN x nanotubes. Phys Status Solidi B 244:4078–4081. doi:10.1002/pssb.200776151

    Article  CAS  Google Scholar 

  • Bulusheva LG, Okotrub AV, Kinloch IA, Asanov IP, Kurenya AG, Kudashov AG, Chen X, Song H (2008a) Effect of nitrogen doping on Raman spectra of multi-walled carbon nanotubes. Phys Status Solidi B 245:1971–1974. doi:10.1002/pssb.200879592

    Article  CAS  Google Scholar 

  • Bulusheva LG, Okotrub AV, Kudashov AG, Shubin Yu V, Shlyakhova EV, Yudanov NF, Pazhetnov EM, Boronin AI, Vyalikh DV (2008b) Effect of Fe/Ni catalyst composition on nitrogen doping and field emission properties of carbon nanotubes. Carbon 46(6):864–869. doi:10.1016/j.carbon.2008.02.009

    Article  CAS  Google Scholar 

  • Choi HC, Park J, Kim B (2005) Distribution and structure of N atoms in multiwalled carbon nanotubes using variable-energy X-ray photoelectron spectroscopy. J Phys Chem B 109:4333–4340. doi:10.1021/jp0453109

    Article  CAS  Google Scholar 

  • Czerw R, Terrones M, Charlier JC, Blase X, Foley B, Kamalakaran R, Grobert N, Terrones H, Tekleab D, Ajayan PM, Blau W, Ruhle M, Carroll DL (2001) Identification of electron donor states in N-doped carbon nanotubes. Nano Lett 1:457–460. doi:10.1021/nl015549q

    Article  CAS  Google Scholar 

  • Ghosh K, Kumar M, Maruyama T, Ando Y (2010) Tailoring the field emission property of nitrogen-doped carbon nanotubes by controlling the graphitic/pyridinic substitution. Carbon 48:191–200. doi:10.1016/j.carbon.2009.09.003

    Article  CAS  Google Scholar 

  • He MS, Zhou S, Zhang J, Liu ZF, Robinson C (2005) CVD growth of N-doped carbon nanotubes on silicon substrates and its mechanism. J Phys Chem B 109:9275–9279. doi:10.1021/jp044868d

    Article  CAS  Google Scholar 

  • Kan K, Xia TL, Li L, Bi HM, Fu HG, Shi KY (2009) Amidation of single-walled carbon nanotubes by a hydrothermal process for the electrooxidation of nitric oxide. Nanotechnology 20:185502. doi:10.1088/0957-4484/20/18/185502

    Article  Google Scholar 

  • Kim SY, Lee JY, Na CW, Park J, Seo K, Kim B (2005) N-doped double-walled carbon nanotubes synthesized by chemical vapor deposition. Chem Phys Lett 413:300–305. doi:10.1016/j.cplett.2005.07.093

    Article  CAS  Google Scholar 

  • Lee YT, Kim NS, Bae SY, Park J, Yu SC, Ryu H, Lee HJ (2003) Growth of vertically aligned nitrogen-doped carbon nanotubes: control of the nitrogen content over the temperature range 900–1100°C. J Phys Chem B 107:12958–12963. doi:10.1021/jp0274536

    Article  CAS  Google Scholar 

  • Lee SU, Belosludov RV, Mizuseki H, Kawazoe Y (2009) Designing nanogadgetry for nanoelectronic devices with nitrogen-doped capped carbon nanotubes. Small 5:1769–1775. doi:10.1002/smll.200801938

    Article  CAS  Google Scholar 

  • Lim SH, Li RJ, Ji W, Lin JY (2007) Effects of nitrogenation on single-walled carbon nanotubes within density functional theory. Phys Rev B 76:195406. doi:10.1103/PhysRevB.76.195406

    Article  Google Scholar 

  • Liu J, Webster S, Carroll DL (2005) Temperature and flow rate of NH3 effects on nitrogen content and doping environments of carbon nanotubes grown by injection CVD method. J Phys Chem B 109:15769–15774. doi:10.1021/jp050123b

    Article  CAS  Google Scholar 

  • Maldonado S, Morin S, Stevenson KJ (2006) Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 44:1429–1437. doi:10.1016/j.carbon.2005.11.027

    Article  CAS  Google Scholar 

  • Nath M, Satishkumar B, Govindaraj A, Vinod CP, Rao CNR (2000) Production of bundles of aligned carbon and carbon–nitrogen nanotubes by the pyrolysis of precursors on silica-supported iron and cobalt catalysts. Chem Phys Lett 322:333–340. doi:10.1016/S0009-2614(00)00437-1

    Article  CAS  Google Scholar 

  • Nevidomskyy AH, Csanyi G, Payne MC (2003) Chemically active substitutional nitrogen impurity in carbon nanotubes. Phys Rev Lett 91(10):105502. doi:10.1103/PhysRevLett.91.105502

    Article  Google Scholar 

  • Omanovic S, Roscoe SG (2000) Interfacial behavior of β-lactoglobulin at a stainless steel surface: an electrochemical impedance spectroscopy study. J Colloid Interface Sci 227:452–460. doi:10.1006/jcis.2000.6913

    Article  CAS  Google Scholar 

  • Tao XY, Zhang XB, Sun FY, Cheng JP, Liu F, Luo ZQ (2007) Large-scale CVD synthesis of nitrogen-doped multi-walled carbon nanotubes with controllable nitrogen content on a CoxMg1−xMoO4 catalyst. Diam Relat Mater 16:425–430. doi:10.1016/j.diamond.2006.08.019

    Article  CAS  Google Scholar 

  • Terrones M, Terrones H, Grobert N, Hsu WK, Zhu YQ, Hare JP et al (1999) Efficient route to large arrays of CNx nanofibers by pyrolysis of ferrocene/melamine mixtures. Appl Phys Lett 75:3932–3934. doi:10.1063/1.125498

    Article  CAS  Google Scholar 

  • Villalpando-Páez F, Romero AH, Muñoz-Sandoval E, Martínez LM, Terrones H, Terrones M (2004) Fabrication of vapor and gas sensors using films of aligned CNx nanotubes. Chem Phys Lett 386:137–143. doi:10.1016/j.cplett.2004.01.052

    Article  Google Scholar 

  • Xiao K, Liu Y, Hu P, Yu G, Sun Y, Zhu D (2005) n-Type field-effect transistors made of an individual nitrogen-doped multiwalled carbon nanotube. J Am Chem Soc 127:8614–8617. doi:10.1021/ja042554y

    Article  CAS  Google Scholar 

  • Yang QH, Hou PX, Unno M, Yamauchi S, Saito R, Kyotani T (2005) Dual Raman features of double coaxial carbon nanotubes with N-doped and B-doped multiwalls. Nano Lett 5:2465–2469. doi:10.1021/nl051779j

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 20676027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Ying Shi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, WX., Zhang, R., Xia, TL. et al. Influence of NH3 flow rate on pyridine-like N content and NO electrocatalytic oxidation of N-doped multiwalled carbon nanotubes. J Nanopart Res 13, 2351–2360 (2011). https://doi.org/10.1007/s11051-010-9994-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9994-2

Keywords

Navigation