Skip to main content
Log in

Multicomponent periodic nanoparticle superlattices

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this article, we review the state-of-the-art in the preparation and characterization of multicomponent self-assembled superlattices of colloidal nanoparticles with core sizes in the range of 2–20 nm and interparticle spacing less than 2 nm down to intimate contact stemming from sintering. Several aspects of the field are discussed, including: structural organization, the role of particle size distribution, key interparticle forces at play, and methods of investigation of the structures. Contrary to the extensively studied colloidal crystals composed of microscale particles, the nanoparticles possess unique size-dependent properties, such as electronic, optical, or magnetic, which when combined into periodic structures can potentially lead to new collective states stemming from precise positioning of the nanocolloids. As such, we examine a number of emerging applications of this new class of metamaterials. Finally, we speculate on the potential impact of these materials, the new directions, and the challenges for the researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aizenberg J, Muller DA, Grazul JL, Hamann DR (2003) Direct fabrication of large micropatterned single crystals. Science 299:1205–1208

    Article  CAS  Google Scholar 

  • Auer S, Frenkel D (2001) Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy. Nature 413:711–713

    Article  CAS  Google Scholar 

  • Bain CD, Troughton EB, Tao YT, Evall J, Whitesides GM, Nuzzo RG (1989) Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc 111:321–335

    Article  CAS  Google Scholar 

  • Baker JL, Widmer-Cooper A, Toney MF, Geissler PL, Alivisatos AP (2010) Device-scale perpendicular alignment of colloidal nanorods. Nano Lett 10:195–201

    Article  CAS  Google Scholar 

  • Barick KC, Bahadur D (2010) Self-assembly of colloidal nanoscale particles: fabrication, properties and applications. J Nanosci Nanotechnol 10:668–689

    Article  CAS  Google Scholar 

  • Bartlett P, Ottewill RH, Pusey PN (1992) Superlattice formation in binary-mixtures of hard-sphere colloids. Phys Rev Lett 68:3801–3804

    Article  CAS  Google Scholar 

  • Black CT, Murray CB, Sandstrom RL, Sun SH (2000) Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. Science 290:1131–1134

    Article  CAS  Google Scholar 

  • Blake AJ, Champness NR, Hubberstey P, Li WS, Withersby MA, Schroder M (1999) Inorganic crystal engineering using self-assembly of tailored building-blocks. Coord Chem Rev 183:117–138

    Article  CAS  Google Scholar 

  • Bodnarchuk MI, Kovalenko MV, Heiss W, Talapin DV (2010) Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor. J Am Chem Soc 132:11967–11977

    Article  CAS  Google Scholar 

  • Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  • Chen Z, O’Brien S (2008) Structure direction of II–VI semiconductor quantum dot binary nanoparticle superlattices by tuning radius ratio. ACS Nano 2:1219–1229

    Article  CAS  Google Scholar 

  • Chen CC, Herhold AB, Johnson CS, Alivisatos AP (1997) Size dependence of structural metastability in semiconductor nanocrystals. Science 276:398–401

    Article  CAS  Google Scholar 

  • Chen XD, Lenhert S, Hirtz M, Lu N, Fuchs H, Chi LF (2007a) Langmuir–Blodgett patterning: a bottom-up way to build mesostructures over large areas. Acc Chem Res 40:393–401

    Article  CAS  Google Scholar 

  • Chen ZY, Moore J, Radtke G, Sirringhaus H, O’Brien S (2007b) Binary nanoparticle superlattices in the semiconductor–semiconductor system: CdTe and CdSe. J Am Chem Soc 129:15702–15709

    Article  CAS  Google Scholar 

  • Chen J, Dong AG, Cai J, Ye X, Kang Y, Kikkawa JM, Murray CB (2010a) Collective dipolar interactions in self-assembled magnetic binary nanocrystal superlattice membranes. Nano Lett. doi:10.1021/nl103568q

  • Chen J, Ye XC, Murray CB (2010b) Systematic electron crystallographic studies of self-assembled binary nanocrystal superlattices. ACS Nano 4:2374–2381

    Article  CAS  Google Scholar 

  • Cheng ZD, Russell WB, Chaikin PM (1999) Controlled growth of hard-sphere colloidal crystals. Nature 401:893–895

    Article  CAS  Google Scholar 

  • Cheon J, Park JI, Choi JS, Jun YW, Kim S, Kim MG, Kim YM, Kim YJ (2006) Magnetic superlattices and their nanoscale phase transition effects. Proc Natl Acad Sci USA 103:3023–3027

    Article  CAS  Google Scholar 

  • Cho KS, Talapin DV, Gaschler W, Murray CB (2005) Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J Am Chem Soc 127:7140–7147

    Article  CAS  Google Scholar 

  • Collier CP, Saykally RJ, Shiang JJ, Henrichs SE, Heath JR (1997) Reversible tuning of silver quantum dot monolayers through the metal–insulator transition. Science 277:1978–1981

    Article  CAS  Google Scholar 

  • Collier CP, Vossmeyer T, Heath JR (1998) Nanocrystal superlattices. Ann Rev Phys Chem 49:371–404

    Article  CAS  Google Scholar 

  • Costescu RM, Cahill DG, Fabreguette FH, Sechrist ZA, George SM (2004) Ultra-low thermal conductivity in W/Al2O3 nanolaminates. Science 303:989–990

    Article  CAS  Google Scholar 

  • Cottin X, Monson PA (1995) Substitutionally ordered solid-solutions of hard-spheres. J Chem Phys 102:3354–3360

    Article  CAS  Google Scholar 

  • Courty A, Mermet A, Albouy PA, Duval E, Pileni MP (2005) Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals. Nat Mater 4:395–398

    Article  CAS  Google Scholar 

  • Desiraju GR (1995) Supramolecular synthons in crystal engineering—a new organic-synthesis. Angew Chem Int Ed 34:2311–2327

    Article  CAS  Google Scholar 

  • Dinsmore AD, Hsu MF, Nikolaides MG, Marquez M, Bausch AR, Weitz DA (2002) Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298:1006–1009

    Article  CAS  Google Scholar 

  • Dong AG, Chen J, Vora PM, Kikkawa JM, Murray CB (2010) Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 466:474–477

    Article  CAS  Google Scholar 

  • Eldridge MD, Madden PA, Frenkel D (1993a) Entropy-driven formation of a superlattice in a hard-sphere binary mixture. Nature 365:35–37

    Article  CAS  Google Scholar 

  • Eldridge MD, Madden PA, Frenkel D (1993b) The stability of the AB13 crystal in a binary hard-sphere system. Mol Phys 79:105–120

    Article  CAS  Google Scholar 

  • Evers WH, Friedrich H, Filion L, Dijkstra M, Vanmaekelbergh D (2009) Observation of a ternary nanocrystal superlattice and its structural characterization by electron tomography. Angew Chem Int Ed 48:9655–9657

    CAS  Google Scholar 

  • Evers WH, De Nijs B, Filion L, Castillo S, Dijkstra M, Vanmaekelbergh D (2010) Entropy-driven formation of binary semiconductor–nanocrystal superlattices. Nano Lett 10:4235–4241

    Article  CAS  Google Scholar 

  • Fan SS, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai HJ (1999) Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283:512–514

    Article  CAS  Google Scholar 

  • Fialkowski M, Bitner A, Grzybowski BA (2005) Self-assembly of polymeric microspheres of complex internal structures. Nat Mater 4:93–97

    Article  CAS  Google Scholar 

  • Friedrich H, Gommes CJ, Overgaag K, Meeldijk JD, Evers WH, de Nijs B, Boneschanscher MP, de Jongh PE, Verkleij AJ, de Jong KP, van Blaaderen A, Vanmaekelbergh D (2009) Quantitative structural analysis of binary nanocrystal superlattices by electron tomography. Nano Lett 9:2719–2724

    Article  CAS  Google Scholar 

  • Furumi S, Fudouzi H, Sawada T (2010) Self-organized colloidal crystals for photonics and laser applications. Laser Photonics Rev 4:205–220

    Article  CAS  Google Scholar 

  • Ge GL, Brus L (2000) Evidence for spinodal phase separation in two-dimensional nanocrystal self-assembly. J Phys Chem B 104:9573–9575

    Article  CAS  Google Scholar 

  • Gelbart WM, Sear RP, Heath JR, Chaney S (1999) Array formation in nano-colloids: theory and experiment in 2D. Faraday Discuss 112:299–307

    Article  CAS  Google Scholar 

  • Greig LM, Philp D (2001) Applying biological principles to the assembly and selection of synthetic superstructures. Chem Soc Rev 30:287–302

    Article  CAS  Google Scholar 

  • Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791

    Article  CAS  Google Scholar 

  • Grzybowski BA, Wilmer CE, Kim J, Browne KP, Bishop KJM (2009) Self-assembly: from crystals to cells. Soft Matter 5:1110–1128

    Article  CAS  Google Scholar 

  • Hachisu S, Yoshimura S (1980) Optical demonstration of crystalline superstructures in binary-mixtures of latex globules. Nature 283:188–189

    Article  CAS  Google Scholar 

  • Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide–amphiphile nanofibers. Science 294:1684–1688

    Article  CAS  Google Scholar 

  • Hartgerink JD, Beniash E, Stupp SI (2002) Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci USA 99:5133–5138

    Article  CAS  Google Scholar 

  • Hawker CJ, Russell TP (2005) Block copolymer lithography: merging “bottom-up” with “top-down” processes. MRS Bull 30:952–966

    Article  CAS  Google Scholar 

  • Heath JR, Knobler CM, Leff DV (1997) Pressure/temperature phase diagrams and superlattices of organically functionalized metal nanocrystal monolayers: the influence of particle size, size distribution, and surface passivant. J Phys Chem B 101:189–197

    Article  CAS  Google Scholar 

  • Hunt N, Jardine R, Bartlett P (2000) Superlattice formation in mixtures of hard-sphere colloids. Phys Rev E 62:900–913

    Article  CAS  Google Scholar 

  • Huo LH, Li W, Lu LH, Cui HN, Xi SQ, Wang J, Zhao B, Shen YC, Lu ZH (2000) Preparation, structure, and properties of three-dimensional ordered alpha-Fe2O3 nanoparticulate film. Chem Mater 12:790–794

    Article  CAS  Google Scholar 

  • Hynninen AP, Thijssen JHJ, Vermolen ECM, Dijkstra M, van Blaaderen A (2007) Self-assembly route for photonic crystals with a bandgap in the visible region. Nat Mater 6:202–205

    Article  CAS  Google Scholar 

  • Jacobs K, Zaziski D, Scher EC, Herhold AB, Alivisatos AP (2001) Activation volumes for solid–solid transformations in nanocrystals. Science 293:1803–1806

    Article  CAS  Google Scholar 

  • Jia S, Banerjee S, Herman IP (2008) Mechanism of the electrophoretic deposition of CdSe nanocrystal films: influence of the nanocrystal surface and charge. J Phys Chem C 112:162–171

    Article  CAS  Google Scholar 

  • Kalsin AM, Grzybowski BA (2007) Controlling the growth of “ionic” nanoparticle supracrystals. Nano Lett 7:1018–1021

    Article  CAS  Google Scholar 

  • Kalsin AM, Fialkowski M, Paszewski M, Smoukov SK, Bishop KJM, Grzybowski BA (2006) Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312:420–424

    Article  CAS  Google Scholar 

  • Kiely CJ, Fink J, Brust M, Bethell D, Schiffrin DJ (1998) Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 396:444–446

    Article  CAS  Google Scholar 

  • Kiely CJ, Fink J, Zheng JG, Brust M, Bethell D, Schiffrin DJ (2000) Ordered colloidal nanoalloys. Adv Mater 12:640–643

    Article  CAS  Google Scholar 

  • Kim F, Kwan S, Akana J, Yang PD (2001) Langmuir–Blodgett nanorod assembly. J Am Chem Soc 123:4360–4361

    Article  CAS  Google Scholar 

  • Kim W, Zide J, Gossard A, Klenov D, Stemmer S, Shakouri A, Majumdar A (2006) Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys Rev Lett 96:045901–045904

    Article  CAS  Google Scholar 

  • Kolny J, Kornowski A, Weller H (2002) Self-organization of cadmium sulfide and gold nanoparticles by electrostatic interaction. Nano Lett 2:361–364

    Article  CAS  Google Scholar 

  • Kovalenko MV, Bodnarchuk MI, Talapin DV (2010) Nanocrystal superlattices with thermally degradable hybrid inorganic–organic capping ligands. J Am Chem Soc 132:15124–15126

    Article  CAS  Google Scholar 

  • Kummerfeld JK, Hudson TS, Harrowell P (2008) The densest packing of AB binary hard-sphere homogeneous compounds across all size ratios. J Phys Chem B 112:10773–10776

    Article  CAS  Google Scholar 

  • Lambert K, Capek RK, Bodnarchuk MI, Kovalenko MV, Van Thourhout D, Heiss W, Hens Z (2010) Langmuir–Schaefer deposition of quantum dot multilayers. Langmuir 26:7732–7736

    Article  CAS  Google Scholar 

  • Laves F (1956) In theory of alloy phases. American Society for Metals, Cleveland, p 124

    Google Scholar 

  • Lehn JM (1990) Perspectives in supramolecular chemistry—from molecular recognition towards molecular information-processing and self-organization. Angew Chem Int Ed 29:1304–1319

    Article  Google Scholar 

  • Leslie-Pelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8:1770–1783

    Article  CAS  Google Scholar 

  • Leunissen ME, Christova CG, Hynninen AP, Royall CP, Campbell AI, Imhof A, Dijkstra M, van Roij R, van Blaaderen A (2005) Ionic colloidal crystals of oppositely charged particles. Nature 437:235–240

    Article  CAS  Google Scholar 

  • Li M, Schnablegger H, Mann S (1999) Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 402:393–395

    Article  CAS  Google Scholar 

  • Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169

    Article  CAS  Google Scholar 

  • Lu W, Lieber CM (2007) Nanoelectronics from the bottom up. Nat Mater 6:841–850

    Article  CAS  Google Scholar 

  • Lu Y, Liu GL, Lee LP (2005) High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Lett 5:5–9

    Article  CAS  Google Scholar 

  • Lu C, Chen Z, O’Brien S (2008) Optimized conditions for the self-organization of CdSe–Au and CdSe–CdSe binary nanoparticle superlattices. Chem Mater 20:3594–3600

    Article  CAS  Google Scholar 

  • Maillard M, Motte L, Ngo AT, Pileni MP (2000) Rings and hexagons made of nanocrystals: a Marangoni effect. J Phys Chem B 104:11871–11877

    Article  CAS  Google Scholar 

  • Manna L, Milliron DJ, Meisel A, Scher EC, Alivisatos AP (2003) Controlled growth of tetrapod-branched inorganic nanocrystals. Nat Mater 2:382–385

    Article  CAS  Google Scholar 

  • Marlow F, Muldarisnur, Sharifi P, Brinkmann R, Mendive C (2009) Opals: status and prospects. Angew Chem Int Ed 48:6212–6233

    Article  CAS  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  Google Scholar 

  • Moulton B, Zaworotko MJ (2001) From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem Rev 101:1629–1658

    Article  CAS  Google Scholar 

  • Mueggenburg KE, Lin XM, Goldsmith RH, Jaeger HM (2007) Elastic membranes of close-packed nanoparticle arrays. Nat Mater 6:656–660

    Article  CAS  Google Scholar 

  • Murray MJ, Sanders JV (1980) Close-packed structures of spheres of 2 different sizes. 2. The packing densities of likely arrangements. Philos Mag A 42:721–740

    Article  CAS  Google Scholar 

  • Murray CB, Kagan CR, Bawendi MG (1995) Self-organization of CdSe nanocrystallites into 3-dimensional quantum-dot superlattices. Science 270:1335–1338

    Article  CAS  Google Scholar 

  • Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610

    Article  CAS  Google Scholar 

  • Norris DJ, Arlinghaus EG, Meng LL, Heiny R, Scriven LE (2004) Opaline photonic crystals: how does self-assembly work? Adv Mater 16:1393–1399

    Article  CAS  Google Scholar 

  • Ohara PC, Gelbart WM (1998) Interplay between hole instability and nanoparticle array formation in ultrathin liquid films. Langmuir 14:3418–3424

    Article  CAS  Google Scholar 

  • Ohara PC, Leff DV, Heath JR, Gelbart WM (1995) Crystallization of opals from polydisperse nanoparticles. Phys Rev Lett 75:3466–3469

    Article  CAS  Google Scholar 

  • Ohara PC, Heath JR, Gelbart WM (1997) Self-assembly of submicrometer rings of particles from solutions of nanoparticles. Angew Chem Int Ed 36:1078–1080

    Article  CAS  Google Scholar 

  • Ondarcuhu T, Millanrodriguez J, Mancini HL, Garcimartin A, Perezgarcia C (1993) Benard–Marangoni convective patterns in small cylindrical layers. Phys Rev E 48:1051–1057

    Article  Google Scholar 

  • Overgaag K, Evers W, de Nijs B, Koole R, Meeldijk J, Vanmaekelbergh D (2008) Binary superlattices of PbSe and CdSe nanocrystals. J Am Chem Soc 130:7833–7835

    Article  CAS  Google Scholar 

  • Park SJ, Lazarides AA, Mirkin CA, Letsinger RL (2001) Directed assembly of periodic materials from protein and oligonucleotide-modified nanoparticle building blocks. Angew Chem Int Ed 40:2909–2912

    Article  CAS  Google Scholar 

  • Parthe E (1961) Space filling of crystal structures. A contribution to the graphical presentation of geometrical relationships in simple crystal structures. Z Kristallogr 115:52–79

    Article  CAS  Google Scholar 

  • Paul S, Pearson C, Molloy A, Cousins MA, Green M, Kolliopoulou S, Dimitrakis P, Normand P, Tsoukalas D, Petty MC (2003) Langmuir–Blodgett film deposition of metallic nanoparticles and their application to electronic memory structures. Nano Lett 3:533–536

    Article  CAS  Google Scholar 

  • Philp D, Stoddart JF (1996) Self-assembly in natural and unnatural systems. Angew Chem Int Ed 35:1155–1196

    CAS  Google Scholar 

  • Pieranski P (1983) Colloidal crystals. Contemp Phys 24:25–73

    Article  CAS  Google Scholar 

  • Podsiadlo P, Kaushik AK, Arruda EM, Waas AM, Shim BS, Xu JD, Nandivada H, Pumplin BG, Lahann J, Ramamoorthy A, Kotov NA (2007) Ultrastrong and stiff layered polymer nanocomposites. Science 318:80–83

    Article  CAS  Google Scholar 

  • Prasad BLV, Sorensen CM, Klabunde KJ (2008) Gold nanoparticle superlattices. Chem Soc Rev 37:1871–1883

    Article  CAS  Google Scholar 

  • Pusey P (1991) Colloidal suspensions. In: Hansen JP, Devesque D, Zinn-Justin J (eds) Liquids, freezing and glass transition. North Holland, Amsterdam, pp 763–931

  • Rabani E, Reichman DR, Geissler PL, Brus LE (2003) Drying-mediated self-assembly of nanoparticles. Nature 426:271–274

    Article  CAS  Google Scholar 

  • Redl FX, Cho KS, Murray CB, O’Brien S (2003) Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423:968–971

    Article  CAS  Google Scholar 

  • Sanders JV (1980) Close-packed structures of spheres of 2 different sizes. 1. Observations on natural opal. Philos Mag A 42:705–720

    Article  CAS  Google Scholar 

  • Sanders JV, Murray MJ (1978) Ordered arrangements of spheres of 2 different sizes in opal. Nature 275:201–203

    Article  CAS  Google Scholar 

  • Saunders AE, Korgel BA (2005) Observation of an AB phase in bidisperse nanocrystal superlattices. ChemPhysChem 6:61–65

    Article  CAS  Google Scholar 

  • Schmid EG (2004) Nanoparticles—from theory to applications. Wiley-VCH, Weinheim

    Google Scholar 

  • Shevchenko EV, Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2002) Colloidal synthesis and self-assembly of COPt3 nanocrystals. J Am Chem Soc 124:11480–11485

    Article  CAS  Google Scholar 

  • Shevchenko EV, Talapin DV, Schnablegger H, Kornowski A, Festin O, Svedlindh P, Haase M, Weller H (2003) Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: The role of nucleation rate in size control of CoPt3 nanocrystals. J Am Chem Soc 125:9090–9101

    Article  CAS  Google Scholar 

  • Shevchenko EV, Talapin DV, O’Brien S, Murray CB (2005) Polymorphism in AB nanoparticle superlattices: an example of semiconductor-metal metamaterials. J Am Chem Soc 127:8741–8747

    Article  CAS  Google Scholar 

  • Shevchenko EV, Talapin DV, Kotov NA, O’Brien S, Murray CB (2006a) Structural diversity in binary nanoparticle superlattices. Nature 439:55–59

    Article  CAS  Google Scholar 

  • Shevchenko EV, Talapin DV, Murray CB, O’Brien S (2006b) Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. J Am Chem Soc 128:3620–3637

    Article  CAS  Google Scholar 

  • Shevchenko EV, Kortright JB, Talapin DV, Aloni S, Alivisatos AP (2007) Quasi-ternary nanoparticle superlattices through nanoparticle design. Adv Mater 19:4183–4188

    Article  CAS  Google Scholar 

  • Shevchenko EV, Ringler M, Schwemer A, Talapin DV, Klar TA, Rogach AL, Feldmann J, Alivisatos AP (2008) Self-assembled binary superlattices of CdSe and Au nanocrystals and their fluorescence properties. J Am Chem Soc 130:3274–3275

    Article  CAS  Google Scholar 

  • Shim M, Guyot-Sionnest P (1999) Permanent dipole moment and charges in colloidal semiconductor quantum dots. J Chem Phys 111:6955–6964

    Article  CAS  Google Scholar 

  • Smith AM, Nie SM (2010) Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res 43:190–200

    Article  CAS  Google Scholar 

  • Smith DK, Goodfellow B, Smilgies DM, Korgel BA (2009) Self-assembled simple hexagonal AB binary nanocrystal superlattices: SEM, GISAXS, and defects. J Am Chem Soc 131:3281–3290

    Article  CAS  Google Scholar 

  • Srivastava S, Santos A, Critchley K, Kim KS, Podsiadlo P, Sun K, Lee J, Xu CL, Lilly GD, Glotzer SC, Kotov NA (2010) Light-controlled self-assembly of semiconductor nanoparticles into twisted ribbons. Science 327:1355–1359

    Article  CAS  Google Scholar 

  • Sukhanova A, Baranov AV, Perova TS, Cohen JHM, Nabiev I (2006) Controlled self-assembly of nanocrystals into polycrystalline fluorescent dendrites with energy-transfer properties. Angew Chem Int Ed 45:2048–2052

    Article  CAS  Google Scholar 

  • Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992

    Article  CAS  Google Scholar 

  • Talapin DV, Shevchenko EV, Murray CB, Titov AV, Kral P (2007) Dipole–dipole interactions in nanoparticle superlattices. Nano Lett 7:1213–1219

    Article  CAS  Google Scholar 

  • Talapin DV, Shevchenko EV, Bodnarchuk MI, Ye XC, Chen J, Murray CB (2009) Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461:964–967

    Article  CAS  Google Scholar 

  • Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458

    Article  CAS  Google Scholar 

  • Tanaka H (2000) Viscoelastic phase separation. J Phys Condens Mat 12:R207–R264

    Article  CAS  Google Scholar 

  • Tang J, Ge GL, Brus LE (2002a) Gas–liquid–solid phase transition model for two-dimensional nanocrystal self-assembly on graphite. J Phys Chem B 106:5653–5658

    Article  CAS  Google Scholar 

  • Tang ZY, Kotov NA, Giersig M (2002b) Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297:237–240

    Article  CAS  Google Scholar 

  • Tang ZY, Zhang ZL, Wang Y, Glotzer SC, Kotov NA (2006) Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314:274–278

    Article  CAS  Google Scholar 

  • Tao A, Kim F, Hess C, Goldberger J, He RR, Sun YG, Xia YN, Yang PD (2003) Langmuir–Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett 3:1229–1233

    Article  CAS  Google Scholar 

  • Tao AR, Habas S, Yang PD (2008a) Shape control of colloidal metal nanocrystals. Small 4:310–325

    Article  CAS  Google Scholar 

  • Tao AR, Huang JX, Yang PD (2008b) Langmuir–Blodgettry of nanocrystals and nanowires. Acc Chem Res 41:1662–1673

    Article  CAS  Google Scholar 

  • Thiele U, Mertig M, Pompe W (1998) Dewetting of an evaporating thin liquid film: heterogeneous nucleation and surface instability. Phys Rev Lett 80:2869–2872

    Article  CAS  Google Scholar 

  • Tian YC, Fendler JH (1996) Langmuir-Blodgett film formation from fluorescence-activated, surfactant-capped, size-selected CdS nanoparticles spread on water surfaces. Chem Mater 8:969–974

    Article  CAS  Google Scholar 

  • Tran TB, Beloborodov IS, Lin XM, Bigioni TP, Vinokur VM, Jaeger HM (2005) Multiple cotunneling in large quantum dot arrays. Phys Rev Lett 95:076806/1–076806/4

    Google Scholar 

  • Trindade T, O’Brien P, Pickett NL (2001) Nanocrystalline semiconductors: synthesis, properties, and perspectives. Chem Mater 13:3843–3858

    Article  CAS  Google Scholar 

  • Trizac E, Eldridge MD, Madden PA (1997) Stability of the AB crystal for asymmetric binary hard sphere mixtures. Mol Phys 90:675–678

    CAS  Google Scholar 

  • Urban JJ, Talapin DV, Shevchenko EV, Kagan CR, Murray CB (2007) Synergismin binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag-2 Te thin films. Nat Mater 6:115–121

    Article  CAS  Google Scholar 

  • van Blaaderen A, Ruel R, Wiltzius P (1997) Template-directed colloidal crystallization. Nature 385:321–324

    Article  Google Scholar 

  • Velev OD (2006) Self-assembly of unusual nanoparticle crystals. Science 312:376–377

    Article  CAS  Google Scholar 

  • Vlasov YA, Bo XZ, Sturm JC, Norris DJ (2001) On-chip natural assembly of silicon photonic bandgap crystals. Nature 414:289–293

    Article  CAS  Google Scholar 

  • Whang D, Jin S, Wu Y, Lieber CM (2003) Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett 3:1255–1259

    Article  CAS  Google Scholar 

  • Whitesides GM, Grzybowski BA (2002) Self-assembly at all scales. Science 295:2418–2421

    Article  CAS  Google Scholar 

  • Yan M, Zhang HT, Widjaja EJ, Chang RPH (2003) Self-assembly of well-aligned gallium-doped zinc oxide nanorods. J Appl Phys 94:5240–5246

    Article  CAS  Google Scholar 

  • Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437:664–670

    Article  CAS  Google Scholar 

  • Zabet-Khosousi A, Dhirani AA (2008) Charge transport in nanoparticle assemblies. Chem Rev 108:4072–4124

    Article  CAS  Google Scholar 

  • Zeng H, Li J, Liu JP, Wang ZL, Sun SH (2002) Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420:395–398

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work at the Center for Nanoscale Materials is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. P. P. acknowledges the support of Willard Frank Libby postdoctoral fellowship from Argonne National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul Podsiadlo or Elena V. Shevchenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podsiadlo, P., Krylova, G.V., Demortière, A. et al. Multicomponent periodic nanoparticle superlattices. J Nanopart Res 13, 15–32 (2011). https://doi.org/10.1007/s11051-010-0174-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0174-1

Keywords

Navigation